The effect of calcium chelation on lymphocyte monovalent cation permeability, transport and concentration. 1981

M R Quastel, and G B Segel, and M A Lichtman

We have quantified the effect of EGTA on K exodus and uptake in human blood lymphocytes. When lymphocytes were exposed to a medium containing an EGTA concentration that resulted in an ionized Calcium (Ca) of less than 10 microM, K exodus began to increase. This increase reached nearly threefold that of the control rate in a medium containing sufficient EGTA to reduce the ionized Ca concentration below 0.1 microM. When K exodus was increased, K uptake increased proportionately. This increase in K uptake represented active transport and was associated with an 80% increase in intracellular Na concentration from 15 to 27 mM. The addition of Ca to a medium containing EGTA reversed to normal the increased K exodus and uptake. Histidine, a potent chelator of divalent cations other than Ca, had no effect on K transport. These data indicate that extracellular Ca chelation leads to an increase in lymphocyte membrane permeability and cation leak. This increased leak is associated with an elevation of the cell Na and an increase in transport to a rate equivalent to that of the exodus rate. The compensatory increase in active transport maintains the cell monovalent cation concentration within 10 to 15 mM of unperturbed levels.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D005026 Ethylene Glycols An ethylene compound with two hydroxy groups (-OH) located on adjacent carbons. They are viscous and colorless liquids. Some are used as anesthetics or hypnotics. However, the class is best known for their use as a coolant or antifreeze. Dihydroxyethanes,Ethanediols,Glycols, Ethylene
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill

Related Publications

M R Quastel, and G B Segel, and M A Lichtman
December 1972, Journal of cellular physiology,
M R Quastel, and G B Segel, and M A Lichtman
April 1981, Biochimica et biophysica acta,
M R Quastel, and G B Segel, and M A Lichtman
January 1973, Physiological chemistry and physics,
M R Quastel, and G B Segel, and M A Lichtman
February 1982, Tsitologiia,
M R Quastel, and G B Segel, and M A Lichtman
May 1982, Biulleten' eksperimental'noi biologii i meditsiny,
M R Quastel, and G B Segel, and M A Lichtman
January 1981, The Journal of biological chemistry,
M R Quastel, and G B Segel, and M A Lichtman
April 1979, The Journal of antibiotics,
M R Quastel, and G B Segel, and M A Lichtman
January 1993, Tsitologiia,
M R Quastel, and G B Segel, and M A Lichtman
January 1982, Biochimica et biophysica acta,
M R Quastel, and G B Segel, and M A Lichtman
September 1967, Biochemical and biophysical research communications,
Copied contents to your clipboard!