Purine nucleoside synthesis, an efficient method employing nucleoside phosphorylases. 1981

T A Krenitsky, and G W Koszalka, and J V Tuttle

An improved method for the enzymatic synthesis of purine nucleosides is described. Pyrimidine nucleosides were used as pentosyl donors and two phosphorylases were used as catalysts. One of the enzymes, either uridine phosphorylase (Urd Pase) or thymidine phosphorylase (dThd Pase), catalyzed the phosphorolysis of the pentosyl donor. The other enzyme, purine nucleoside phosphorylase (PN Pase), catalyzed the synthesis of the product nucleoside by utilizing the pentose 1-phosphate ester generated from the phosphorolysis of the pyrimidine nucleoside. Urd Pase, dThd Pase, and PN Pase were separated from each other in extracts of Escherichia coli by titration with calcium phosphate gel. Each enzyme was further purified by ion-exchange chromatography. Factors that affect the stability of these catalysts were studied. The pH optima for the stability of Urd Pase, dThd Pase, and PN Pase were 7.6, 6.5, and 7.4, respectively. The order of relative heat stability was Urd Pase greater than PN Pase greater than dThd Pase. The stability of each enzyme increased with increasing enzyme concentration. This dependence was strongest with dThd Pase and weakest with Urd Pase. Of the substrates tested, the most potent stabilizers of Urd Pase, dThd Pase, and PN Pase were uridine, 2'-deoxyribose 1-phosphate, and ribose 1-phosphate, respectively. Some general guidelines for optimization of yields are given. In a model reaction, optimal product formation was obtained at low phosphate concentrations. As examples of the efficiency of the method, the 2'-deoxyribonucleoside of 6-(dimethylamino)purine and the ribonucleoside of 2-amino-6-chloropurine were prepared in yields of 81 and 76%, respectively.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008722 Methods A series of steps taken in order to conduct research. Techniques,Methodological Studies,Methodological Study,Procedures,Studies, Methodological,Study, Methodological,Method,Procedure,Technique
D010430 Pentosyltransferases Enzymes of the transferase class that catalyze the transfer of a pentose group from one compound to another.
D011683 Purine-Nucleoside Phosphorylase An enzyme that catalyzes the reaction between a purine nucleoside and orthophosphate to form a free purine plus ribose-5-phosphate. EC 2.4.2.1. Inosine Phosphorylase,Nicotinamide Riboside Phosphorylase,Purine Nucleoside Phosphorylases,Nucleoside Phosphorylases, Purine,Phosphorylase, Inosine,Phosphorylase, Nicotinamide Riboside,Phosphorylase, Purine-Nucleoside,Phosphorylases, Purine Nucleoside,Purine Nucleoside Phosphorylase,Riboside Phosphorylase, Nicotinamide
D011684 Purine Nucleosides Purines with a RIBOSE attached that can be phosphorylated to PURINE NUCLEOTIDES. Purine Nucleoside,Nucleoside, Purine,Nucleosides, Purine
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013939 Thymidine Phosphorylase An enzyme that catalyzes the transfer of 2-deoxy-D-ribose from THYMIDINE to orthophosphate, thereby liberating thymidine. PD-ECGF,Platelet-Derived Endothelial Cell Growth Factor,Gliostatin,Platelet Derived Endothelial Cell Growth Factor
D014543 Uridine Phosphorylase An enzyme that catalyzes the transfer of ribose from uridine to orthophosphate, forming uracil and ribose 1-phosphate. 5-Fluoro-2'-deoxyuridine Phosphorylase,5 Fluoro 2' deoxyuridine Phosphorylase,Phosphorylase, 5-Fluoro-2'-deoxyuridine,Phosphorylase, Uridine

Related Publications

T A Krenitsky, and G W Koszalka, and J V Tuttle
November 2000, Bioorganic & medicinal chemistry,
T A Krenitsky, and G W Koszalka, and J V Tuttle
March 1967, Canadian journal of biochemistry,
T A Krenitsky, and G W Koszalka, and J V Tuttle
December 2000, Pharmacology & therapeutics,
T A Krenitsky, and G W Koszalka, and J V Tuttle
August 2023, World journal of microbiology & biotechnology,
T A Krenitsky, and G W Koszalka, and J V Tuttle
June 2006, Journal of the American Chemical Society,
T A Krenitsky, and G W Koszalka, and J V Tuttle
January 1997, European journal of biochemistry,
T A Krenitsky, and G W Koszalka, and J V Tuttle
March 1986, Revista espanola de fisiologia,
T A Krenitsky, and G W Koszalka, and J V Tuttle
May 2013, Extremophiles : life under extreme conditions,
T A Krenitsky, and G W Koszalka, and J V Tuttle
July 2009, BMC structural biology,
T A Krenitsky, and G W Koszalka, and J V Tuttle
December 2019, Molecules (Basel, Switzerland),
Copied contents to your clipboard!