The distribution of two highly repeated DNA sequences within Drosophila melanogaster chromosomes. 1981

D M Steffensen, and R Appels, and W J Peacock

In situ hybridization using 3H-RNA probes has been used to localize the sequences found in two satellites of density 1.705 g/cc and 1.672 g/cc to specific sites within the chromosomal complement. A detailed analysis of the sites on the S chromosome was carried out using the acute series of inversions to relate the heterochromatic breakpoint relative to the location of the sequence on this chromosome. It has also been possible to establish the order of arrangement of 1.705 and 1.672 DNA at the heterochromatic-euchromatic junction on chromosome 3(R). A mitotic map is provided. The Tm of hybrids formed in situ showed that the hybrids were representative of the sequences being analyzed. The two satellites also were traced through a number of purification procedures to show that a covalent linkage may be likely between the 1.705 g/cc and 1.672 g/cc satellite as predicted from in situ hybridization analyses.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009695 Nucleic Acid Renaturation The reformation of all, or part of, the native conformation of a nucleic acid molecule after the molecule has undergone denaturation. Acid Renaturation, Nucleic,Acid Renaturations, Nucleic,Nucleic Acid Renaturations,Renaturation, Nucleic Acid,Renaturations, Nucleic Acid
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002503 Centromere The clear constricted portion of the chromosome at which the chromatids are joined and by which the chromosome is attached to the spindle during cell division. Centromeres
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004276 DNA, Satellite Highly repetitive DNA sequences found in HETEROCHROMATIN, mainly near centromeres. They are composed of simple sequences (very short) (see MINISATELLITE REPEATS) repeated in tandem many times to form large blocks of sequence. Additionally, following the accumulation of mutations, these blocks of repeats have been repeated in tandem themselves. The degree of repetition is on the order of 1000 to 10 million at each locus. Loci are few, usually one or two per chromosome. They were called satellites since in density gradients, they often sediment as distinct, satellite bands separate from the bulk of genomic DNA owing to a distinct BASE COMPOSITION. Satellite DNA,Satellite I DNA,DNA, Satellite I,DNAs, Satellite,DNAs, Satellite I,I DNA, Satellite,I DNAs, Satellite,Satellite DNAs,Satellite I DNAs
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D M Steffensen, and R Appels, and W J Peacock
January 1974, Cold Spring Harbor symposia on quantitative biology,
D M Steffensen, and R Appels, and W J Peacock
May 1977, Journal of molecular biology,
D M Steffensen, and R Appels, and W J Peacock
June 1971, Proceedings of the National Academy of Sciences of the United States of America,
D M Steffensen, and R Appels, and W J Peacock
March 1986, Cell differentiation,
D M Steffensen, and R Appels, and W J Peacock
August 1993, Genetics,
D M Steffensen, and R Appels, and W J Peacock
December 1974, Cell,
D M Steffensen, and R Appels, and W J Peacock
June 1985, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik,
D M Steffensen, and R Appels, and W J Peacock
March 1978, Experimental cell research,
D M Steffensen, and R Appels, and W J Peacock
March 1973, Proceedings of the National Academy of Sciences of the United States of America,
D M Steffensen, and R Appels, and W J Peacock
December 1978, Chromosoma,
Copied contents to your clipboard!