Accumulation of guanosine tetraphosphate (ppGpp) under nitrogen starvation in Anacystis nidulans, a cyanobacterium. 1981

G M Friga, and G Borbély, and G L Farkas

The effect of nitrate deprivation on cell growth and nucleotide level was studied in Anacystis nidulans. A 10-fold reduction in nitrate level resulted in a drastic slowdown of growth. Upon addition of nitrate to the starving cultures, after a lag period, the cells resumed growth. Nutritional shift-down induced a transitory expansion of the guanosine tetraphosphate (ppGpp) pool, preceded by a transitory increase in GTP and ATP concentrations. After having reached peak values, the concentration of ppGpp, GTP and ATP dropped to the respective base levels. The expansion of the ppGpp pool was found to be due to an increase in ppGpp synthesis, rather than to a decrease in ppGpp breakdown. After nutritional shift-up, no decrease in the ppGpp level was found. In starving cells, a decrease in free amino acids was observed to occur concomitantly with the expansion of the ppGpp pool. The level of free amino acids started to increase simultaneously with the contraction of the ppGpp pool.

UI MeSH Term Description Entries
D009566 Nitrates Inorganic or organic salts and esters of nitric acid. These compounds contain the NO3- radical. Nitrate
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D006150 Guanine Nucleotides Guanine Nucleotide,Guanosine Phosphates,Nucleotide, Guanine,Nucleotides, Guanine,Phosphates, Guanosine
D006159 Guanosine Tetraphosphate Guanosine 5'-diphosphate 2'(3')-diphosphate. A guanine nucleotide containing four phosphate groups. Two phosphate groups are esterified to the sugar moiety in the 5' position and the other two in the 2' or 3' position. This nucleotide serves as a messenger to turn off the synthesis of ribosomal RNA when amino acids are not available for protein synthesis. Synonym: magic spot I. Alarmone ppGpp,Bacterial Magic Spot ppGpp,Guanosine 5'-(trihydrogen diphosphate), mono(trihydrogen diphosphate) (ester),Guanosine 5'-diphosphate 2'(3')-diphosphate,ppGpp,Guanosine 3'-Diphosphate 5'-Diphosphate,Guanosine 5'-Diphosphate 3'-Diphosphate,3'-Diphosphate 5'-Diphosphate, Guanosine,5'-Diphosphate 3'-Diphosphate, Guanosine,Guanosine 3' Diphosphate 5' Diphosphate,Guanosine 5' Diphosphate 3' Diphosphate,Tetraphosphate, Guanosine,ppGpp, Alarmone
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000458 Cyanobacteria A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE. Algae, Blue-Green,Blue-Green Bacteria,Cyanophyceae,Algae, Blue Green,Bacteria, Blue Green,Bacteria, Blue-Green,Blue Green Algae,Blue Green Bacteria,Blue-Green Algae

Related Publications

G M Friga, and G Borbély, and G L Farkas
July 1972, Biochemical and biophysical research communications,
G M Friga, and G Borbély, and G L Farkas
September 1985, Plant physiology,
G M Friga, and G Borbély, and G L Farkas
September 1987, Journal of bacteriology,
G M Friga, and G Borbély, and G L Farkas
January 1974, Analytical biochemistry,
G M Friga, and G Borbély, and G L Farkas
March 1975, Biochemistry,
G M Friga, and G Borbély, and G L Farkas
May 1990, The Journal of biological chemistry,
G M Friga, and G Borbély, and G L Farkas
October 1983, Journal of bacteriology,
Copied contents to your clipboard!