The positioning of acyl chains in both 1-O-alkyl-2-acyl- and 1,2-diacyl-phospholipids was analyzed at various time intervals for a thermotolerant strain (NT-1) of Tetrahymena pyriformis cells during cold acclimation. During the 10 h period of adaptation, cells were not able to grow but maintained the ability to divide. The content of palmitate (16 : 0) in phosphatidylcholine and phosphatidylethanolamine was decreased after temperature-shift, with a concurrent increase of palmitoleate (16 : 1 delta 9) and gamma-linolenate (18 : 3 delta 6,9,12). An increase in gamma-linolenate at the 1-position and linoleate at the 2-position was observed in diacyl-phospholipids (phosphatidylethanolamine, phosphatidylcholine and 2-aminoethylphosphonolipid). The 2-position of 1-O-alkyl-2-acyl-phosphatidylcholine and 1-O-alkyl-2-acyl-(2-aminoethyl)phosphonolipid was occupied mainly by gamma-linolenate together with cilienate (18 : 2 delta 6,11) and linoleate (18 : 2 delta 9,12). Cilienate and gamma-linolenate at the 2-position of 1-O-alkyl-2-acyl-phosphatidylcholine were increased after temperature shift, with a small decrease of linoleate. There are little significant changes in alkyl ether lipid content of phosphatidylcholine and 2-aminoethylphosphonolipid after temperature shift. The results indicate that phosphatidylethanolamine, which is most abundant and present only in the diacyl form, would play a crucial role in thermal adaptation of membrane lipids, by replacing palmitate with gamma-linolenate at its 1-position, and also that hexadecyl/gamma-linolenoyl phosphatidylcholine would be an important molecular species in the acclimation.