Heterocyst differentiation and cell division in the cyanobacterium Anabaena cylindrica: effect of high light intensity. 1981

D G Adams, and N G Carr

Heterocyst differentiation in the cyanobacterium Anabaena cylindrica is initiated by the removal of fixed nitrogen from the medium. These specialized cells occur singly at regular intervals within filaments of vegetative cells. Incubation of cultures for periods of up to 12 h immediately prior to or following removal of fixed nitrogen, at a light intensity (500 mi Einsteins cm-2 s-1) approximately 10-fold higher than that required for optimum growth, resulted in the differentiation of pairs of adjacent (double) heterocysts. The frequency of double heterocysts was proportional to the length of the period of high light intensity. During growth at normal light intensity approximately 5% of cell divisions were symmetrical, but this increased more than 3-fold during 10-h incubation at high light intensity. The frequency of dividing cells remained constant during this period, but increased rapidly on return to normal light. The frequency of double heterocysts was reduced if a period of incubation at normal light intensity was interposed between the 12-h period at high light intensity and transfer to nitrogen-free medium. A period of 8 h normal light was required to reduce the frequency of double heterocysts to control values, and this corresponded to the length of time needed for the frequency of symmetrical divisions to return to control levels following 12 h at high light intensity. We confirm that cell division in Anabaena cylindrica is asymmetrical and conclude that the presence of double heterocysts results from an increase in the symmetry of cell division during incubation at high light intensity. The results also support the finding of previous workers that a cell is only susceptible to differentiation during a short period following its formation. During the period of high light the rate of doubling of the absorbance of the culture at 750 mn increased from 24 h to approximately 10 h and decreased to more than 100 h on return to normal light. The very high rate could be explained by increases in the volume and granular content of cells during incubation at high light intensity and did not represent an equivalent increase in the rate of cell division.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008858 Microscopy, Phase-Contrast A form of interference microscopy in which variations of the refracting index in the object are converted into variations of intensity in the image. This is achieved by the action of a phase plate. Phase-Contrast Microscopy,Microscopies, Phase-Contrast,Microscopy, Phase Contrast,Phase Contrast Microscopy,Phase-Contrast Microscopies
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D000458 Cyanobacteria A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE. Algae, Blue-Green,Blue-Green Bacteria,Cyanophyceae,Algae, Blue Green,Bacteria, Blue Green,Bacteria, Blue-Green,Blue Green Algae,Blue Green Bacteria,Blue-Green Algae

Related Publications

D G Adams, and N G Carr
September 2022, Proceedings of the National Academy of Sciences of the United States of America,
D G Adams, and N G Carr
September 1976, Journal of general microbiology,
D G Adams, and N G Carr
May 1975, Archives of microbiology,
D G Adams, and N G Carr
January 1969, Archiv fur Mikrobiologie,
D G Adams, and N G Carr
November 2004, Microbiology (Reading, England),
D G Adams, and N G Carr
February 1988, Biochemical and biophysical research communications,
Copied contents to your clipboard!