Antibodies to left-handed Z-DNA bind to interband regions of Drosophila polytene chromosomes. 1981

A Nordheim, and M L Pardue, and E M Lafer, and A Möller, and B D Stollar, and A Rich

Antibodies which are specific to the Z-DNA conformation have been purified and characterized on the basis of their binding to three different DNA polymers which can form this left-handed helix. These antibodies bind specifically to polytene chromosomes of Drosophila melanogaster as visualized by fluorescent staining. The staining is found in the interband regions and its intensity varies among different interbands in a reproducible manner. This is the first identification of the Z-DNA conformation in material of biological origin.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D002871 Chromosome Banding Staining of bands, or chromosome segments, allowing the precise identification of individual chromosomes or parts of chromosomes. Applications include the determination of chromosome rearrangements in malformation syndromes and cancer, the chemistry of chromosome segments, chromosome changes during evolution, and, in conjunction with cell hybridization studies, chromosome mapping. Banding, Chromosome,Bandings, Chromosome,Chromosome Bandings
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

A Nordheim, and M L Pardue, and E M Lafer, and A Möller, and B D Stollar, and A Rich
July 1983, Proceedings of the National Academy of Sciences of the United States of America,
A Nordheim, and M L Pardue, and E M Lafer, and A Möller, and B D Stollar, and A Rich
December 1982, Proceedings of the National Academy of Sciences of the United States of America,
A Nordheim, and M L Pardue, and E M Lafer, and A Möller, and B D Stollar, and A Rich
January 1983, Cold Spring Harbor symposia on quantitative biology,
A Nordheim, and M L Pardue, and E M Lafer, and A Möller, and B D Stollar, and A Rich
January 1991, Doklady Akademii nauk SSSR,
A Nordheim, and M L Pardue, and E M Lafer, and A Möller, and B D Stollar, and A Rich
October 1982, Experimental cell research,
A Nordheim, and M L Pardue, and E M Lafer, and A Möller, and B D Stollar, and A Rich
November 2011, BMC genomics,
A Nordheim, and M L Pardue, and E M Lafer, and A Möller, and B D Stollar, and A Rich
July 1994, Genetika,
A Nordheim, and M L Pardue, and E M Lafer, and A Möller, and B D Stollar, and A Rich
August 1998, Genetika,
A Nordheim, and M L Pardue, and E M Lafer, and A Möller, and B D Stollar, and A Rich
June 1981, Proceedings of the National Academy of Sciences of the United States of America,
A Nordheim, and M L Pardue, and E M Lafer, and A Möller, and B D Stollar, and A Rich
January 2009, Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology,
Copied contents to your clipboard!