Breath-by-breath measurement of true alveolar gas exchange. 1981

W L Beaver, and N Lamarra, and K Wasserman

A method has been developed for on-line breath-by-breath calculation of alveolar gas exchange by correcting the gas exchange measured at the mouth for changes in lung gas stores. The corrections are applied to the total lung gas exchange, which is found by directly subtracting expired from inspired volume of each gas. Corrections are made for both breath-to-breath changes in lung volumes and changes in alveolar gas concentrations. The lung volume correction term has the effect of reducing the large error sensitivity of O2 exchange that has, in the past, resulted from direct determination by total lung gas exchange. Error each gas. Corrections are made for both breath-to-breath changes in lung volumes and changes in alveolar gas concentrations. The lung volume correction term has the effect of reducing the large error sensitivity of O2 exchange that has, in the past, resulted from direct determination by total lung gas exchange. Error each gas. Corrections are made for both breath-to-breath changes in lung volumes and changes in alveolar gas concentrations. The lung volume correction term has the effect of reducing the large error sensitivity of O2 exchange that has, in the past, resulted from direct determination by total lung gas exchange. Error sensitivity analysis shows that the effect of inaccuracies due to errors in measuring gas flow or gas concentrations are similar in magnitude to those in the open-circuit method that has traditionally been used. The algorithm for alveolar gas exchange has been implemented in a computer program for on-line respiratory analysis alongside the open-circuit calculation of gas exchange at the mouth that has been used in out laboratory. By use of several experimental studies, it is shown that there are very apparent breath-to-breath differences between the gas exchange measured by the two methods. During metabolic and respiratory transients, these differences often have significant influence on interpretation of the underlying physiology.

UI MeSH Term Description Entries
D008176 Lung Volume Measurements Measurement of the amount of air that the lungs may contain at various points in the respiratory cycle. Lung Capacities,Lung Volumes,Capacity, Lung,Lung Capacity,Lung Volume,Lung Volume Measurement,Measurement, Lung Volume,Volume, Lung
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D012129 Respiratory Function Tests Measurement of the various processes involved in the act of respiration: inspiration, expiration, oxygen and carbon dioxide exchange, lung volume and compliance, etc. Lung Function Tests,Pulmonary Function Tests,Function Test, Pulmonary,Function Tests, Pulmonary,Pulmonary Function Test,Test, Pulmonary Function,Tests, Pulmonary Function,Function Test, Lung,Function Test, Respiratory,Function Tests, Lung,Function Tests, Respiratory,Lung Function Test,Respiratory Function Test,Test, Lung Function,Test, Respiratory Function,Tests, Lung Function,Tests, Respiratory Function
D001944 Breath Tests Any tests done on exhaled air. Breathalyzer Tests,Breath Test,Breathalyzer Test,Test, Breath,Test, Breathalyzer,Tests, Breath,Tests, Breathalyzer
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D005652 Functional Residual Capacity The volume of air remaining in the LUNGS at the end of a normal, quiet expiration. It is the sum of the RESIDUAL VOLUME and the EXPIRATORY RESERVE VOLUME. Common abbreviation is FRC. Capacities, Functional Residual,Capacity, Functional Residual,Functional Residual Capacities,Residual Capacities, Functional,Residual Capacity, Functional
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

W L Beaver, and N Lamarra, and K Wasserman
August 1983, Journal of applied physiology: respiratory, environmental and exercise physiology,
W L Beaver, and N Lamarra, and K Wasserman
March 1987, Medical & biological engineering & computing,
W L Beaver, and N Lamarra, and K Wasserman
January 1987, The Annals of physiological anthropology = Seiri Jinruigaku Kenkyukai kaishi,
W L Beaver, and N Lamarra, and K Wasserman
February 1983, Journal of applied physiology: respiratory, environmental and exercise physiology,
W L Beaver, and N Lamarra, and K Wasserman
April 2004, Journal of applied physiology (Bethesda, Md. : 1985),
W L Beaver, and N Lamarra, and K Wasserman
August 1993, British journal of anaesthesia,
W L Beaver, and N Lamarra, and K Wasserman
September 2018, European journal of applied physiology,
W L Beaver, and N Lamarra, and K Wasserman
May 1963, Journal of applied physiology (Bethesda, Md. : 1985),
W L Beaver, and N Lamarra, and K Wasserman
January 2001, Pflugers Archiv : European journal of physiology,
W L Beaver, and N Lamarra, and K Wasserman
November 2023, American journal of physiology. Regulatory, integrative and comparative physiology,
Copied contents to your clipboard!