Intergenic suppressors of temperature-sensitive sporulation in Bacillus subtilis are allele non-specific. 1981

R A Sharrock, and T Leighton

The Bacillus subtilis mutant cal1 carries a non-reverting mutation in ribosomal protein L17 (r-protein L17) that causes both resistance to the antibiotic chalcomycin (Calr) and temperature-sensitive sporulation (Spots). Second-site suppressor (rev) mutations that relieve the Spots phenotype have been isolated from cal1. Three suppressor mutations - rev4, rev10, rev11 - each increase the sporulation frequency of cal1 at the non-permissive temperature from 3% to 95% of the wild-type level. The cal1 rev strains remain resistant to chalcomycin and two-dimensional gel electrophoresis analysis indicates that they contain the same altered r-protein L17 as the original cal1 strain and no additional altered r-proteins. The three rev mutations have been mapped at a single locus between narA and sacA on the B. subtilis chromosome and recombination indexes for the rev mutations indicate that they are tightly linked to one another. Antibiotic resistance Spots mutations that cause temperature-sensitive sporulation have previously been isolated in RNA polymerase, in the 30S and 50S subunits of the ribosome, and in elongation factor G. The rev4, 10, and 11 suppressor mutations are non-specific in their action in that they restore significant levels of sporulation at the non-permissive temperature in all of the Spots strains that we have tested. This result suggests that Spots mutations in components of the B. subtilis transcription and translation systems share a common molecular basis for their sporulation-defective phenotypes.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D012269 Ribosomal Proteins Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal
D013171 Spores, Bacterial Heat and stain resistant, metabolically inactive bodies formed within the vegetative cells of bacteria of the genera Bacillus and Clostridium. Bacterial Spores,Bacterial Spore,Spore, Bacterial
D013489 Suppression, Genetic Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE). Suppressor Mutation,Genetic Suppression,Genetic Suppressions,Mutation, Suppressor,Mutations, Suppressor,Suppressions, Genetic,Suppressor Mutations

Related Publications

R A Sharrock, and T Leighton
January 1977, Molecular & general genetics : MGG,
R A Sharrock, and T Leighton
April 1973, Proceedings of the National Academy of Sciences of the United States of America,
R A Sharrock, and T Leighton
May 1972, Canadian journal of microbiology,
R A Sharrock, and T Leighton
March 1970, Journal of bacteriology,
R A Sharrock, and T Leighton
December 1973, Annales de microbiologie,
R A Sharrock, and T Leighton
January 1977, The Journal of biological chemistry,
R A Sharrock, and T Leighton
June 1993, Journal of bacteriology,
R A Sharrock, and T Leighton
July 1974, Journal of molecular biology,
Copied contents to your clipboard!