Sexual agglutinins from the Chlamydomonas flagellar membrane. Partial purification and characterization. 1982

W S Adair, and B C Monk, and R Cohen, and C Hwang, and U W Goodenough

Chlamydomonas sexual agglutinins have been quantitatively extracted from isolated flagella in vitro using the dialyzable nonionic detergent octyl-D-glucopyranoside and from cells in vivo with 12.5 mM EDTA. Both preparations elicit normal sexual responses from gametes of complementary, but not like, mating types. Extracts of vegetative cells and several agglutination-deficient (imp) mutants are totally inactive. Agglutinin activity is sensitive to trypsin, mild periodate oxidation, and heating at 60 degrees C for 1 min. These findings, coupled with the size of the molecule (it is excluded from Sepharose 6B and sediments as a 12 S particle in sucrose gradients) lead us to propose that the Chlamydomonas sexual agglutinins are large glycoproteins or glycoprotein aggregates which associate with the flagellar membrane in an extrinsic fashion. Partial purification of in vivo 125I-surface labeled EDTA extracts rules out several surface polypeptides, including the bulk of material migrating in the region of the major membrane glycoprotein (Mr 350,000), as agglutinin candidates and indicates that the active molecule is a minor component of the flagellar membrane. In addition, in vitro assays suggest a mechanism for in vivo sexual agglutination whereby stable adhesion is achieved by the active redistribution of agglutinins to the flagellar tips.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002696 Chlamydomonas A genus GREEN ALGAE in the order VOLVOCIDA. It consists of solitary biflagellated organisms common in fresh water and damp soil. Chlamydomona
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005407 Flagella A whiplike motility appendage present on the surface cells. Prokaryote flagella are composed of a protein called FLAGELLIN. Bacteria can have a single flagellum, a tuft at one pole, or multiple flagella covering the entire surface. In eukaryotes, flagella are threadlike protoplasmic extensions used to propel flagellates and sperm. Flagella have the same basic structure as CILIA but are longer in proportion to the cell bearing them and present in much smaller numbers. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Flagellum

Related Publications

W S Adair, and B C Monk, and R Cohen, and C Hwang, and U W Goodenough
January 1985, Journal of cell science. Supplement,
W S Adair, and B C Monk, and R Cohen, and C Hwang, and U W Goodenough
January 1986, Methods in enzymology,
W S Adair, and B C Monk, and R Cohen, and C Hwang, and U W Goodenough
February 2005, The Plant cell,
W S Adair, and B C Monk, and R Cohen, and C Hwang, and U W Goodenough
January 1993, Cell motility and the cytoskeleton,
W S Adair, and B C Monk, and R Cohen, and C Hwang, and U W Goodenough
June 1984, Biochimica et biophysica acta,
W S Adair, and B C Monk, and R Cohen, and C Hwang, and U W Goodenough
May 1983, Cell,
W S Adair, and B C Monk, and R Cohen, and C Hwang, and U W Goodenough
October 1971, Journal of bacteriology,
W S Adair, and B C Monk, and R Cohen, and C Hwang, and U W Goodenough
July 1992, Plant physiology,
W S Adair, and B C Monk, and R Cohen, and C Hwang, and U W Goodenough
January 1967, Biochimica et biophysica acta,
W S Adair, and B C Monk, and R Cohen, and C Hwang, and U W Goodenough
October 1978, The Journal of cell biology,
Copied contents to your clipboard!