Specific chemical modification of the readily nitrated tyrosine of the RTEM beta-lactamase and of bacillus cereus beta-lactamase I. The role of the tyrosine in beta-lactamase catalysis. 1982

B L Wolozin, and R Myerowitz, and R F Pratt

The function of the hydroxyl group of the tyrosine residue readily nitrated by tetranitromethane (tyrosine-105) in the RTEM plasmid-derived beta-lactamase (penicillinase; penicillin amido beta-lactam-hydrolase, EC 3.5.1.6) from E. coli and in Bacillus cereus beta-lactamase I has been investigated by chemical modification methods. In the case of B. cereus beta-lactamase I the nitrated tyrosine can be acetylated by acetic anhydride without effect on beta-lactamase activity The nitrated tyrosine of the E. coli enzyme can also be acetylated but in this case beta-lactamase activity is lost in a manner which directly correlates with extent of acetylation. However, deacetylation of the nitrotyrosine does not restore activity. The dilemma created by the latter result has been resolved by development of a new method of tyrosine hydroxyl modification at low pH. The nitrated enzyme is reduced by dithionite and then treated with either carbonyldiimidazole or N-(2.2.2-trifluoroethoxycarbonyl)imidazole, both of which convert 3-aminotyrosine into benzoxazolinonylalanine. That the final modification has been achieved is demonstrated both by classical chemical methods and by employment of Fourier transform infrared spectroscopy to detect the characteristic benzoxazolinone carbonyl absorption. Further, it is shown that no significant loss of beta-lactamase activity is associated with this modification. Hence in neither the B. cereus or the E. coli enzyme does the readily nitrated tyrosine residue have a direct chemical function at the beta-lactamase active site.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D004227 Dithionite Dithionite. The dithionous acid ion and its salts. Hyposulfite,Sodium Dithionite,Dithionite, Sodium
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000107 Acetylation Formation of an acetyl derivative. (Stedman, 25th ed) Acetylations
D001409 Bacillus cereus A species of rod-shaped bacteria that is a common soil saprophyte. Its spores are widespread and multiplication has been observed chiefly in foods. Contamination may lead to food poisoning.
D001583 Benzoxazoles Benzoxazole
D001618 beta-Lactamases Enzymes found in many bacteria which catalyze the hydrolysis of the amide bond in the beta-lactam ring. Well known antibiotics destroyed by these enzymes are penicillins and cephalosporins. beta-Lactamase,beta Lactamase,beta Lactamases
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

B L Wolozin, and R Myerowitz, and R F Pratt
January 1975, Methods in enzymology,
B L Wolozin, and R Myerowitz, and R F Pratt
July 1970, The Biochemical journal,
B L Wolozin, and R Myerowitz, and R F Pratt
May 1998, The Biochemical journal,
B L Wolozin, and R Myerowitz, and R F Pratt
December 1987, The Biochemical journal,
B L Wolozin, and R Myerowitz, and R F Pratt
November 1985, Biochemistry,
B L Wolozin, and R Myerowitz, and R F Pratt
January 1985, The Journal of biological chemistry,
B L Wolozin, and R Myerowitz, and R F Pratt
August 1980, Biochemistry,
B L Wolozin, and R Myerowitz, and R F Pratt
August 1980, Biochemistry,
B L Wolozin, and R Myerowitz, and R F Pratt
April 1978, Journal of molecular biology,
B L Wolozin, and R Myerowitz, and R F Pratt
October 1974, The Biochemical journal,
Copied contents to your clipboard!