Acidosis and contractility of heart muscle. 1982

P A Poole-Wilson

The contractility of heart muscle is sensitive to small and physiological changes of extracellular pH. The reduction of contractility associated with an acidosis is determined by the fall of pH in the intracellular fluid. The function of many organelles within the cardiac cell is affected by hydrogen ions. The tension generated by isolated myofibrils at a fixed calcium concentration is reduced at low pH. The dominant mechanism for the reduction of contractility in whole tissue is competitive inhibition of the slow calcium current by hydrogen ions. The reduction of the slow calcium current is similar when the same fall of developed tension is induced by acidosis or by a reduction of extracellular calcium concentration. Measurement of tissue pH with fast-responding extracellular electrodes show that, in myocardial ischaemia, tissue acidosis develops at the same time or only seconds before the onset of contractile failure. Much of the reduced contractility can be accounted for by the severity of the acidosis. Although a mild acidosis can delay or prevent damage to the myocardium from ischaemia or hypoxia, a severe acidosis is not beneficial and may even cause tissue necrosis.

UI MeSH Term Description Entries
D007424 Intracellular Fluid The fluid inside CELLS. Fluid, Intracellular,Fluids, Intracellular,Intracellular Fluids
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D009336 Necrosis The death of cells in an organ or tissue due to disease, injury or failure of the blood supply.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D006859 Hydrogen The first chemical element in the periodic table with atomic symbol H, and atomic number 1. Protium (atomic weight 1) is by far the most common hydrogen isotope. Hydrogen also exists as the stable isotope DEUTERIUM (atomic weight 2) and the radioactive isotope TRITIUM (atomic weight 3). Hydrogen forms into a diatomic molecule at room temperature and appears as a highly flammable colorless and odorless gas. Protium,Hydrogen-1

Related Publications

P A Poole-Wilson
January 1983, Comparative biochemistry and physiology. A, Comparative physiology,
P A Poole-Wilson
February 1997, The Journal of urology,
P A Poole-Wilson
January 1986, Journal of Tongji Medical University = Tong ji yi ke da xue xue bao,
P A Poole-Wilson
January 1957, Laboratory investigation; a journal of technical methods and pathology,
P A Poole-Wilson
January 1973, Clinical pharmacology and therapeutics,
P A Poole-Wilson
January 1975, Circulation research,
P A Poole-Wilson
January 1986, Journal of Tongji Medical University = Tong ji yi ke da xue xue bao,
P A Poole-Wilson
January 1973, Nihon rinsho. Japanese journal of clinical medicine,
P A Poole-Wilson
September 1989, Molecular and cellular biochemistry,
Copied contents to your clipboard!