Analysis of vaccinia virus transcriptional complexity in vitro and in vivo: characterization of RNase T1-resistant 5'-terminal oligonucleotides. 1982

C Whitkop, and B R Lipinskas, and S Mercer, and D Panicali, and E Paoletti

Vaccinia virus mRNAs synthesized in vitro and in vivo, polyadenylated leader sequences synthesized in vitro in the absence of added GTP, CTP, or UTP or in the presence of 20 micrograms of actinomycin D per ml, and high-molecular-weight RNA synthesized in vitro under limiting ATP concentrations were labeled specifically in the cap structure using [alpha-32P]GTP and vaccinia-soluble enzyme extracts. The complexity of RNase T1-resistant 5'-terminal oligonucleotides was analyzed by two-dimensional polyacrylamide gel electrophoresis. Approximately 190 unique T1-resistant 5'-terminal oligonucleotides were observed from vaccinia virus 8 to 12S RNA synthesized in vitro. A somewhat greater complexity was observed with polyadenylated leader sequences and actinomycin D RNAs where unique T1-resistant oligonucleotides ranged from approximately 210 to 280 5'-terminal fragments. On a composite fingerprint of the above RNAs, more than 300 identifiable unique T1-resistant 5'-terminal oligonucleotides were observed. Significantly, close to 300 T1-resistant fragments were derived from RNA sedimenting faster than 18S on denaturing sucrose gradients. Analysis of vaccinia RNAs synthesized in vivo in the absence of either de novo protein synthesis or DNA replication or in the presence of actinomycin D gave essentially similar profiles of 5'-terminal T1-resistant oligonucleotide fingerprints consisting of approximately 200 fragments. Analysis of the 5'-terminal T1-resistant oligonucleotides of vaccinia RNAs present after DNA replication showed essentially the same pattern of early T1-fragments albeit in reduced amounts but in addition revealed a complex pattern of T1-resistant oligonucleotides unique to this class of vaccinia RNA.

UI MeSH Term Description Entries
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D009843 Oligoribonucleotides A group of ribonucleotides (up to 12) in which the phosphate residues of each ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D006163 Ribonuclease T1 An enzyme catalyzing the endonucleolytic cleavage of RNA at the 3'-position of a guanylate residue. EC 3.1.27.3. Guanyloribonuclease,RNase T1,Ribonuclease N1,Aspergillus oryzae Ribonuclease,Guanyl-Specific RNase,RNase Apl,RNase F1,RNase Pch 1,RNase ST,Ribonuclease F1,Ribonuclease F2,Ribonuclease ST,Ribonuclease T-1,T 1 RNase,Guanyl Specific RNase,RNase, Guanyl-Specific,RNase, T 1,Ribonuclease T 1,Ribonuclease, Aspergillus oryzae
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D012315 RNA Caps Nucleic acid structures found on the 5' end of eukaryotic cellular and viral messenger RNA and some heterogeneous nuclear RNAs. These structures, which are positively charged, protect the above specified RNAs at their termini against attack by phosphatases and other nucleases and promote mRNA function at the level of initiation of translation. Analogs of the RNA caps (RNA CAP ANALOGS), which lack the positive charge, inhibit the initiation of protein synthesis. RNA Cap,5' Capped RNA,5' mRNA Cap Structure,Cap, RNA,Caps, RNA,RNA, 5' Capped
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

C Whitkop, and B R Lipinskas, and S Mercer, and D Panicali, and E Paoletti
September 1977, Journal of virology,
C Whitkop, and B R Lipinskas, and S Mercer, and D Panicali, and E Paoletti
July 1980, The Journal of biological chemistry,
C Whitkop, and B R Lipinskas, and S Mercer, and D Panicali, and E Paoletti
April 1976, Journal of biochemistry,
C Whitkop, and B R Lipinskas, and S Mercer, and D Panicali, and E Paoletti
January 1978, Journal of virology,
C Whitkop, and B R Lipinskas, and S Mercer, and D Panicali, and E Paoletti
January 1978, Proceedings of the National Academy of Sciences of the United States of America,
C Whitkop, and B R Lipinskas, and S Mercer, and D Panicali, and E Paoletti
June 1978, Journal of virology,
C Whitkop, and B R Lipinskas, and S Mercer, and D Panicali, and E Paoletti
July 1977, Journal of virology,
C Whitkop, and B R Lipinskas, and S Mercer, and D Panicali, and E Paoletti
January 1963, Bollettino della Societa italiana di biologia sperimentale,
C Whitkop, and B R Lipinskas, and S Mercer, and D Panicali, and E Paoletti
January 1989, Journal of virological methods,
C Whitkop, and B R Lipinskas, and S Mercer, and D Panicali, and E Paoletti
November 1977, Journal of virology,
Copied contents to your clipboard!