Ventilatory and arousal responses to hypoxia in sleeping humans. 1982

M Berthon-Jones, and C E Sullivan

We measured ventilatory and arousal responses to progressive eucapnic hypoxia during wakefulness, nonrapid-eye-movement (NREM) sleep, and rapid-eye-movement (REM) sleep using a progressive isocapnic rebreathing method. Nine healthy adults (4 female, 5 male) slept with a mask glued to the face with medical silicone rubber and breathed from a closed valveless biased flow circuit, including an in-line bag-in-box and a variable soda-lime absorber. Progressive hypoxia was induced by consumption of oxygen and by gradual replacement of circuit volume with nitrogen. Tidal volume was measured by electrical integration of the flow signal from a pneumotach on the box. Arterial hemoglobin oxygen saturation (SaO2) was measured with an ear oximeter and end-tidal CO2 tension (PetCO2) was measured continuously and kept constant by variable absorption. Sleep state was identified using standard criteria with 2 channels each of EEG, submental EMG, and EOG. There was marked variability in arousal level both in NREM and REM sleep, with subjects failing to awaken by 70% SaO2, our previously agreed safety limit, on 12 of 26 NREM tests, and 7 of 15 REM tests. During wakefulness, the mean slope +/- SEM of the ventilatory response to hypoxia was 0.68 +/- 0.07 L/min% SaO2 (n = 36, mean PetCO2 = 37.0 mmHg). In NREM sleep, this response decreased to a mean of 0.42 +/- 0.06 L/min/% SaO2 (n = 26, mean PetCO2 = 37.2 mmHg). In REM sleep, the average ventilatory response was further decreased to 0.33 +/- 0.06 L/min/% SaO2 (n = 15, mean PetCO2 = 37.8 mmHg). Analysis of variance showed a significant state-dependent effect on ventilatory response (p less than 0.01). The wake-NREM and wake-REM differences were significantly different (p less than 0.05), but the NREM-REM difference was not (p greater than 0.2). In REM sleep, breath-to-breath variability was marked, and in 2 cases, the response was not significantly different from zero. In all 3 states, the entire ventilatory response was due to increments in tidal volume. We conclude that (1) at normal alveolar CO2 tension, hypoxia is a poor arousal stimulus in humans, both in NREM and REM sleep, and (2) the eucapnic hypoxic response is reduced but present in NREM sleep and similarly reduced but not always present in REM sleep.

UI MeSH Term Description Entries
D008297 Male Males
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D012129 Respiratory Function Tests Measurement of the various processes involved in the act of respiration: inspiration, expiration, oxygen and carbon dioxide exchange, lung volume and compliance, etc. Lung Function Tests,Pulmonary Function Tests,Function Test, Pulmonary,Function Tests, Pulmonary,Pulmonary Function Test,Test, Pulmonary Function,Tests, Pulmonary Function,Function Test, Lung,Function Test, Respiratory,Function Tests, Lung,Function Tests, Respiratory,Lung Function Test,Respiratory Function Test,Test, Lung Function,Test, Respiratory Function,Tests, Lung Function,Tests, Respiratory Function
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D005260 Female Females
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D001143 Arousal Cortical vigilance or readiness of tone, presumed to be in response to sensory stimulation via the reticular activating system. Vigilance, Cortical,Arousals,Cortical Vigilance

Related Publications

M Berthon-Jones, and C E Sullivan
September 2008, Journal of sleep research,
M Berthon-Jones, and C E Sullivan
April 2004, Respiratory physiology & neurobiology,
M Berthon-Jones, and C E Sullivan
April 1978, Journal of applied physiology: respiratory, environmental and exercise physiology,
M Berthon-Jones, and C E Sullivan
July 1979, Journal of applied physiology: respiratory, environmental and exercise physiology,
M Berthon-Jones, and C E Sullivan
May 2000, Journal of applied physiology (Bethesda, Md. : 1985),
M Berthon-Jones, and C E Sullivan
February 2007, Respiratory physiology & neurobiology,
M Berthon-Jones, and C E Sullivan
November 2005, Respiratory physiology & neurobiology,
M Berthon-Jones, and C E Sullivan
April 1985, The American review of respiratory disease,
M Berthon-Jones, and C E Sullivan
March 2005, Respiratory physiology & neurobiology,
M Berthon-Jones, and C E Sullivan
February 2000, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!