Developmental localization of noradrenergic innervation to the rat cerebellum following neonatal 6-hydroxydopa and morphine treatment. 1982

C T Harston, and M B Clark, and J C Hardin, and R M Kostrzewa

In order to demonstrate the influence of morphine on the developmental localization of regenerated noradrenergic fibers in rat cerebellum, a glyoxylic histofluorescent method and radiometric assay for norepinephrine (NE) were utilized. An initial reduction of NE in the cerebellum after 6-hydroxydopa [6-OHDOPA; 60 micrograms/g intraperitoneally (i.p.)] was followed by a return to control levels at 3 days, and an elevation above control levels at 7 days. The initial rates of recovery of NE in the cerebellum of the 6-OHDOPA group of rats and the group receiving morphine (20 micrograms/g i.p.) in combination with 6-OHDOPA were identical up to 7 days. However, by 14 days NE content was further elevated in the cerebellum of the morphine +6-OHDOPA group. Histofluorescent microscopic observations of the cerebellar cortex correlated with the biochemical findings. A reduction in cerebellar NE content at 3 days was associated with a reduction in the number of visible histofluorescent fibers in the cerebellar cortex. By 7 days the relative number of fibers in the 6-OHDOPA groups was similar to that seen in the control group, but by 9 days the relative number of fluorescent fibers in the cerebellar cortex was increased above control. By 13 days there was a further increase in the relative number of fluorescent fibers in the cerebellar cortex of the morphine +6-OHDOPA group, as compared to the group treated with 6-OHDOPA alone. These findings provide an anatomic correlate for recovery of noradrenergic fibers after 6-OHDOPA, and demonstrate an action of morphine in enhancing regenerative sprouting.

UI MeSH Term Description Entries
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002525 Cerebellar Cortex The superficial GRAY MATTER of the CEREBELLUM. It consists of two main layers, the stratum moleculare and the stratum granulosum. Cortex Cerebelli,Cerebelli, Cortex,Cerebellus, Cortex,Cortex Cerebellus,Cortex, Cerebellar
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D004295 Dihydroxyphenylalanine A beta-hydroxylated derivative of phenylalanine. The D-form of dihydroxyphenylalanine has less physiologic activity than the L-form and is commonly used experimentally to determine whether the pharmacological effects of LEVODOPA are stereospecific. Dopa,3,4-Dihydroxyphenylalanine,3-Hydroxy-DL-tyrosine,Dihydroxyphenylalanine Hydrochloride, (2:1),beta-Hydroxytyrosine,3 Hydroxy DL tyrosine,3,4 Dihydroxyphenylalanine,beta Hydroxytyrosine
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C T Harston, and M B Clark, and J C Hardin, and R M Kostrzewa
March 1977, Brain research,
C T Harston, and M B Clark, and J C Hardin, and R M Kostrzewa
January 1978, Brain research bulletin,
C T Harston, and M B Clark, and J C Hardin, and R M Kostrzewa
April 1976, The Journal of pharmacology and experimental therapeutics,
C T Harston, and M B Clark, and J C Hardin, and R M Kostrzewa
March 1980, The Journal of pharmacology and experimental therapeutics,
C T Harston, and M B Clark, and J C Hardin, and R M Kostrzewa
January 2016, Current topics in behavioral neurosciences,
C T Harston, and M B Clark, and J C Hardin, and R M Kostrzewa
August 1975, Research communications in chemical pathology and pharmacology,
C T Harston, and M B Clark, and J C Hardin, and R M Kostrzewa
December 1979, European journal of pharmacology,
C T Harston, and M B Clark, and J C Hardin, and R M Kostrzewa
September 1973, Brain research,
C T Harston, and M B Clark, and J C Hardin, and R M Kostrzewa
October 1983, Japanese journal of pharmacology,
Copied contents to your clipboard!