Factor VIII-induced superaggregation of human platelets. 1982

E P Kirby, and D C Mills, and H Holmsen, and M Russo

High concentrations of bovine factor VIII cause clumping of platelets into a few very large aggregates. This response is termed superaggregation. It is distinct from factor-VIII-induced agglutination but is also independent of both extracellular calcium ions and platelet energy metabolism. Neither agglutinating lectins nor aggregating agents, including thrombin, ADP, the ionophore A23187, and U46619, a prostaglandin analog, can induce superaggregation, even at very high concentrations. Washed platelets undergo superaggregation, and superaggregation does not increase the amounts of fibrinogen or albumin trapped by agglutinated platelets. It is not inhibited by membrane-stabilizing drugs or by colchicine or cytochalasin-B. Formaldehyde and glutaraldehyde prevent superaggregation without affecting the binding of radiolabeled factor VIII to the platelets. Superaggregated platelets are separated by approximately 50 nm and are not shape-changed or degranulated. In adenosine diphosphate (ADP) induced aggregation, the platelets are distorted and only 30 nm apart. Superaggregation is reversed by dextran sulfate, and the dispersed platelets are still able to respond to ADP. Our observations are consistent with the binding of high molecular weight multimers of bovine factor VIII to more than one receptor on each platelet, with superaggregation occurring through recruitment of additional receptors. This process may be interrupted by protein crosslinking reagents, such as formaldehyde and glutaraldehyde.

UI MeSH Term Description Entries
D010974 Platelet Aggregation The attachment of PLATELETS to one another. This clumping together can be induced by a number of agents (e.g., THROMBIN; COLLAGEN) and is part of the mechanism leading to the formation of a THROMBUS. Aggregation, Platelet
D010979 Platelet Function Tests Laboratory examination used to monitor and evaluate platelet function in a patient's blood. Function Test, Platelet,Function Tests, Platelet,Platelet Function Test,Test, Platelet Function,Tests, Platelet Function
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D005169 Factor VIII Factor VIII of blood coagulation. Antihemophilic factor that is part of the factor VIII/von Willebrand factor complex. Factor VIII is produced in the liver and acts in the intrinsic pathway of blood coagulation. It serves as a cofactor in factor X activation and this action is markedly enhanced by small amounts of thrombin. Coagulation Factor VIII,Factor VIII Clotting Antigen,Factor VIII Coagulant Antigen,Factor VIII Procoagulant Activity,Thromboplastinogen,Blood Coagulation Factor VIII,F VIII-C,Factor 8,Factor 8 C,Factor Eight,Factor VIIIC,Hyate-C,Hyatt-C,F VIII C,Hyate C,HyateC,Hyatt C,HyattC
D005557 Formaldehyde A highly reactive aldehyde gas formed by oxidation or incomplete combustion of hydrocarbons. In solution, it has a wide range of uses: in the manufacture of resins and textiles, as a disinfectant, and as a laboratory fixative or preservative. Formaldehyde solution (formalin) is considered a hazardous compound, and its vapor toxic. (From Reynolds, Martindale The Extra Pharmacopoeia, 30th ed, p717) Formalin,Formol,Methanal,Oxomethane
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E P Kirby, and D C Mills, and H Holmsen, and M Russo
October 1976, British journal of haematology,
E P Kirby, and D C Mills, and H Holmsen, and M Russo
November 1986, British journal of haematology,
E P Kirby, and D C Mills, and H Holmsen, and M Russo
February 1978, Haematologica,
E P Kirby, and D C Mills, and H Holmsen, and M Russo
December 1982, The Journal of laboratory and clinical medicine,
E P Kirby, and D C Mills, and H Holmsen, and M Russo
November 1975, Thrombosis et diathesis haemorrhagica,
E P Kirby, and D C Mills, and H Holmsen, and M Russo
January 1983, Biology of the cell,
E P Kirby, and D C Mills, and H Holmsen, and M Russo
June 1975, Thrombosis research,
E P Kirby, and D C Mills, and H Holmsen, and M Russo
September 1989, Thrombosis research,
E P Kirby, and D C Mills, and H Holmsen, and M Russo
June 1982, The Journal of clinical investigation,
E P Kirby, and D C Mills, and H Holmsen, and M Russo
October 1976, British journal of haematology,
Copied contents to your clipboard!