Mechanisms of dietary modification of aflatoxin B1 carcinogenesis. 1982

G Bailey, and M Taylor, and D Selivonchick, and T Eisele, and J Hendricks, and J Nixon, and N Pawlowski, and R Sinnhuber

Trout were fed a range of dietary components which altered their carcinogenic response to aflatoxin B1 (AFB1). Dietary protein at levels substantially exceeding nutritional requirements were synergistic with AFB1. Cyclopropene fatty acids (CPFA) were carcinogenic when fed alone at 20 or 55 ppm, and synergistic when fed with AFB1. In contrast, several flavonoid and indole compounds, especially beta-naphthoflavone (beta-NF) and indole-3-carbinol, inhibited the carcinogenic response when fed prior to and along with AFB1. The mechanisms by which some of these dietary factors modulate AFB1 carcinogenesis were investigated. Dietary beta-naphthoflavone was shown to substantially induce the levels of mixed function oxidase (MFO) activities assayed in vitro. These changes were accompanied by alterations in AFB1 metabolism and binding in freshly isolated hepatocytes. AFB1 incubated in hepatocytes freshly isolated from fish fed beta-NF diet was metabolized more rapidly, showed enhanced rates of detoxication reactions, and decreased accumulation of AFB1-DNA adducts compared to control hepatocytes. These results suggest that beta-NF inhibits AFB1 carcinogenesis at least in part by altering MFO activities such that detoxication is enhanced and initial DNA damage by AFB1 is reduced. In contrast, high dietary protein is a synergist for AFB1 carcinogenesis, and this appears to occur primarily by enhancing the transformation probability for AFB1-initiated genome damage. Fish treated with AFB1 as embryos and then reared on high protein diets had substantially higher incidences of hepatocellular carcinoma (86%) than similarly treated fish fed normal protein diet (44%) or high protein controls without AFB1 exposure (0-2%). The synergistic behavior of dietary CPFAs also appears to partially involve enhanced transformation following DNA damage by AFB1. Fish exposed as embryos to AFB1 and then fed CPFA-containing diets are known to show promotion effects similar to the high protein results (Hendricks, J.D., Proc. 11th Int. Symp. of the Princess Takamatsu Cancer Research Fund, in press.) However, factors other than promotion are involved in the synergism between CPFA and AFB1. Preliminary studies indicate that dietary CPFAs repress MFO activities and depress DNA damage by AFB1 in vitro. If this occurs in vivo, then the net synergistic effect of dietary CPFAs would involve depression of initial AFB1-induced DNA damage, but highly efficient promotion of transformation from the remaining lesions.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D000348 Aflatoxins Furano-furano-benzopyrans that are produced by ASPERGILLUS from STERIGMATOCYSTIN. They are structurally related to COUMARINS and easily oxidized to an epoxide form to become ALKYLATING AGENTS. Members of the group include AFLATOXIN B1; aflatoxin B2, aflatoxin G1, aflatoxin G2; AFLATOXIN M1; and aflatoxin M2. Aflatoxin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001711 Biotransformation The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.
D014337 Trout Various fish of the family SALMONIDAE, usually smaller than salmon. They are mostly restricted to cool clear freshwater. Some are anadromous. They are highly regarded for their handsome colors, rich well-flavored flesh, and gameness as an angling fish. The genera Salvelinus, Salmo, and ONCORHYNCHUS have been introduced virtually throughout the world. Chars,Salvelinus,Char
D016604 Aflatoxin B1 A potent hepatotoxic and hepatocarcinogenic mycotoxin produced by the Aspergillus flavus group of fungi. It is also mutagenic, teratogenic, and causes immunosuppression in animals. It is found as a contaminant in peanuts, cottonseed meal, corn, and other grains. The mycotoxin requires epoxidation to aflatoxin B1 2,3-oxide for activation. Microsomal monooxygenases biotransform the toxin to the less toxic metabolites aflatoxin M1 and Q1. Aflatoxin B(1),Aflatoxin B,Aflatoxin B1 Dihydrochloride, (6aR-cis)-Isomer,Aflatoxin B1, (6aR-cis)-Isomer, 14C-Labeled,Aflatoxin B1, (6aR-cis)-Isomer, 2H-Labeled,Aflatoxin B1, (6aR-cis)-Isomer, 3H-Labeled,Aflatoxin B1, cis(+,-)-Isomer,HSDB-3453,NSC-529592,HSDB 3453,HSDB3453,NSC 529592,NSC529592

Related Publications

G Bailey, and M Taylor, and D Selivonchick, and T Eisele, and J Hendricks, and J Nixon, and N Pawlowski, and R Sinnhuber
January 1994, Annual review of pharmacology and toxicology,
G Bailey, and M Taylor, and D Selivonchick, and T Eisele, and J Hendricks, and J Nixon, and N Pawlowski, and R Sinnhuber
January 1988, International journal of cancer,
G Bailey, and M Taylor, and D Selivonchick, and T Eisele, and J Hendricks, and J Nixon, and N Pawlowski, and R Sinnhuber
January 1979, Journal of environmental pathology and toxicology,
G Bailey, and M Taylor, and D Selivonchick, and T Eisele, and J Hendricks, and J Nixon, and N Pawlowski, and R Sinnhuber
November 1969, Cancer research,
G Bailey, and M Taylor, and D Selivonchick, and T Eisele, and J Hendricks, and J Nixon, and N Pawlowski, and R Sinnhuber
December 2000, Experimental lung research,
G Bailey, and M Taylor, and D Selivonchick, and T Eisele, and J Hendricks, and J Nixon, and N Pawlowski, and R Sinnhuber
December 2010, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
G Bailey, and M Taylor, and D Selivonchick, and T Eisele, and J Hendricks, and J Nixon, and N Pawlowski, and R Sinnhuber
April 1988, Biochemical pharmacology,
G Bailey, and M Taylor, and D Selivonchick, and T Eisele, and J Hendricks, and J Nixon, and N Pawlowski, and R Sinnhuber
March 1988, Carcinogenesis,
G Bailey, and M Taylor, and D Selivonchick, and T Eisele, and J Hendricks, and J Nixon, and N Pawlowski, and R Sinnhuber
August 1978, Cancer research,
G Bailey, and M Taylor, and D Selivonchick, and T Eisele, and J Hendricks, and J Nixon, and N Pawlowski, and R Sinnhuber
December 1967, Cancer research,
Copied contents to your clipboard!