| D004352 |
Drug Resistance, Microbial |
The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). |
Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial |
|
| D006191 |
Haemophilus ducreyi |
A species of HAEMOPHILUS that appears to be the pathogen or causative agent of the sexually transmitted disease, CHANCROID. |
Bacillus ulceris cancrosi,Coccobacillus ducreyi,Hemophilus ducreyi |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D000123 |
Acetyltransferases |
Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1. |
Acetyltransferase |
|
| D015500 |
Chloramphenicol O-Acetyltransferase |
An enzyme that catalyzes the acetylation of chloramphenicol to yield chloramphenicol 3-acetate. Since chloramphenicol 3-acetate does not bind to bacterial ribosomes and is not an inhibitor of peptidyltransferase, the enzyme is responsible for the naturally occurring chloramphenicol resistance in bacteria. The enzyme, for which variants are known, is found in both gram-negative and gram-positive bacteria. EC 2.3.1.28. |
CAT Enzyme,Chloramphenicol Acetyltransferase,Chloramphenicol Transacetylase,Acetyltransferase, Chloramphenicol,Chloramphenicol O Acetyltransferase,Enzyme, CAT,O-Acetyltransferase, Chloramphenicol,Transacetylase, Chloramphenicol |
|