[Modes of action of a shortening system for erucic acid at the mitochondrial level of rat liver]. 1982

P Clouet, and C Henninger, and J Bezard

In this work, were studied the conditions of erucic acid (cis-docosenoic, n-9) shortening by using Rat liver mitochondrial preparations which were incubated in vitro with [14-14C] erucic acid (22:1), with inhibitors of the respiratory chain (rotenone, cyanide) or not, with activators of either the shortening reaction (NAD+, NADP+), or beta-oxidation (malate, carnitine, cytochrome c) or not. The shortening activity was measured by the amount of 14C radioactivity recovered in the shorter fatty acids formed (20:1, 18:1, 16:1) when beta-oxidation was inhibited. The beta-oxidation activity was measured by the amount of 14C recovered in the acid-soluble products (P A S). The incubations were performed under conditions which were the least favourable to peroxysomal activity. Data showed that, with increasing amounts of albumin, which inhibits peroxysomal activity, increasing amounts of shorter fatty acids (20:1, 18:1, 16:1) were formed from erucic acid. This shortening reaction was strongly stimulated by NAD+, more than by NADP+; it was also stimulated by cytochrome c and much more when both NAD+ and cytochrome c were added. Similar data were observed in beta-oxidation, except that practically NADP+ did not exhibit any stimulating effect. Oxidation of NADH by mitochondria only occurred when cytochrome c was added to the medium and was not modified by the addition of ADP or rotenone. These data show that liver mitochondria are capable of shortening erucic acid, as are peroxysomes. This shortening reaction is highly NAD+-dependent and seems to be localized outside the matrix. This system could constitute a second route for utilization of fatty acids in mitochondria, besides the well-known path of beta-oxidation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008830 Microbodies Electron-dense cytoplasmic particles bounded by a single membrane, such as PEROXISOMES; GLYOXYSOMES; and glycosomes. Glycosomes,Glycosome,Microbody
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003067 Coenzymes Small molecules that are required for the catalytic function of ENZYMES. Many VITAMINS are coenzymes. Coenzyme,Enzyme Cofactor,Cofactors, Enzyme,Enzyme Cofactors,Cofactor, Enzyme
D004883 Erucic Acids cis-13-Docosenoic Acids. 22-Carbon monounsaturated, monocarboxylic acids. Docosenoic Acids,Brassidic Acids,Acids, Brassidic,Acids, Docosenoic,Acids, Erucic

Related Publications

P Clouet, and C Henninger, and J Bezard
April 1978, FEBS letters,
P Clouet, and C Henninger, and J Bezard
September 1978, FEBS letters,
P Clouet, and C Henninger, and J Bezard
January 1985, The Biochemical journal,
P Clouet, and C Henninger, and J Bezard
February 1976, Molecular and cellular endocrinology,
P Clouet, and C Henninger, and J Bezard
January 1992, Archives internationales de physiologie, de biochimie et de biophysique,
P Clouet, and C Henninger, and J Bezard
January 1978, Comptes rendus des seances de la Societe de biologie et de ses filiales,
Copied contents to your clipboard!