The kinetic mechanism of chlorpromazine inhibition of erythrocyte hexose transport was investigated using the non-metabolizable glucose analog 3-O-methylglucose. It was found that chlorpromazine added to the external medium is a non-competitive inhibitor of both equilibrium exchange and net 3-O-methylglucose transport at pH 7.8, 15 degrees C. The Ki for equilibrium exchange is 76 +/- 21 microM. When net efflux and equilibrium exchange were measured on the same population of cells the equilibrium exchange was 2.5-times the maximum net efflux. The percent reduction of 3-O-methylglucose flux by chlorpromazine is dependent upon chlorpromazine concentration and not 3-O-methylglucose concentration as expected for a non-competitive inhibitor. Equilibrium exchange and net efflux show the same extent of inhibition at each concentration of chlorpromazine evaluated. These results suggest that exchange and net efflux of 3-O-methylglucose in the human erythrocyte may share a common transport system.