Embryogenesis of peripheral nerve pathways in grasshopper legs. III. Development without pioneer neurons. 1983

H Keshishian, and D Bentley

We have examined the consequence of deleting the first pathfinding neurons to differentiate in the metathoracic leg, cell pair tibial 1 (Ti1) (C. M. Bate, 1976, Nature (London) 260, 54-56; H. Keshishian, 1980, Dev. Biol. 80, 388-397) on the development of two uniquely identifiable follower sensory neurons, and upon the subsequent development of nerve 5B1 in the leg. Following the equivalent of 10-15% of embryonic development in culture the follower sensory neurons were found to have formed topologically normal axonal trajectories in the leg, and to have established contacts with later differentiating sensory and motor axons in an essentially normal fashion. The results show that followers can navigate the route normally taken by the pioneers, and suggest that the pioneers do not have unusual pathfinding capabilities.

UI MeSH Term Description Entries
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D005121 Extremities The farthest or outermost projections of the body, such as the HAND and FOOT. Limbs,Extremity,Limb
D006110 Grasshoppers Plant-eating orthopterans having hindlegs adapted for jumping. There are two main families: Acrididae and Romaleidae. Some of the more common genera are: Melanoplus, the most common grasshopper; Conocephalus, the eastern meadow grasshopper; and Pterophylla, the true katydid. Acrididae,Locusts,Romaleidae,Grasshopper,Locust
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Keshishian, and D Bentley
October 1987, Developmental biology,
H Keshishian, and D Bentley
December 1980, Developmental biology,
H Keshishian, and D Bentley
August 1998, The Journal of comparative neurology,
H Keshishian, and D Bentley
September 1989, Science (New York, N.Y.),
H Keshishian, and D Bentley
January 2017, Development genes and evolution,
Copied contents to your clipboard!