Effect of triiodo-L-thyronine on axonal regeneration in the rat spinal cord after acute compression injury. 1983

C H Tator, and A S Rivlin, and A J Lewis, and B Schmoll

Studies were performed on the effect of triiodo-L-thyronine (T3) on clinical recovery and axonal counts in the pyramidal tract of 56 rats subjected to an acute spinal cord compression injury at T-7. The T3 was given at a daily dose of 5 micrograms/kg for 4 weeks to 28 rats in the treatment group. The treatment and control animals were tested weekly for clinical recovery, and cord function as determined by the inclined-plane technique. Groups of animals were killed at 4 weeks and 12 weeks, and the axons in the pyramidal tract cephalad and caudad to the injury site were counted in sections prepared with Holmes' silver stain. There was no difference in clinical recovery between the treatment and control groups. This negative result contrasts with other studies which showed improved recovery of cord-injured animals treated with thyroid hormones. The possible explanations for this discrepancy are discussed. Similarly, there was no difference in the axon counts between the treated and control groups. Thus, T3 did not improve recovery or axonal regeneration in the pyramidal tract of rats after acute spinal cord compression injury. Between 4 and 12 weeks, there was a marked reduction in the cephalad axon counts in the pyramidal tract in both groups, indicating that approximately 50% of the axons in the pyramidal tract had undergone retrograde degeneration or dying back by 12 weeks after this degree of injury. The T3 did not affect the degree of retrograde degeneration.

UI MeSH Term Description Entries
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013117 Spinal Cord Compression Acute and chronic conditions characterized by external mechanical compression of the SPINAL CORD due to extramedullary neoplasm; EPIDURAL ABSCESS; SPINAL FRACTURES; bony deformities of the vertebral bodies; and other conditions. Clinical manifestations vary with the anatomic site of the lesion and may include localized pain, weakness, sensory loss, incontinence, and impotence. Conus Medullaris Syndrome,Myelopathy, Compressive,Extramedullary Spinal Cord Compression,Spinal Cord Compression, Extramedullary,Compression, Spinal Cord,Compressions, Spinal Cord,Compressive Myelopathy,Conus Medullaris Syndromes,Spinal Cord Compressions,Syndrome, Conus Medullaris,Syndromes, Conus Medullaris
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014284 Triiodothyronine A T3 thyroid hormone normally synthesized and secreted by the thyroid gland in much smaller quantities than thyroxine (T4). Most T3 is derived from peripheral monodeiodination of T4 at the 5' position of the outer ring of the iodothyronine nucleus. The hormone finally delivered and used by the tissues is mainly T3. Liothyronine,T3 Thyroid Hormone,3,3',5-Triiodothyronine,Cytomel,Liothyronine Sodium,Thyroid Hormone, T3
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

C H Tator, and A S Rivlin, and A J Lewis, and B Schmoll
October 2009, Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery,
C H Tator, and A S Rivlin, and A J Lewis, and B Schmoll
March 2008, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
C H Tator, and A S Rivlin, and A J Lewis, and B Schmoll
January 2013, PloS one,
C H Tator, and A S Rivlin, and A J Lewis, and B Schmoll
June 2023, Nature reviews. Molecular cell biology,
C H Tator, and A S Rivlin, and A J Lewis, and B Schmoll
January 1990, The Italian journal of biochemistry,
C H Tator, and A S Rivlin, and A J Lewis, and B Schmoll
August 2018, Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery,
C H Tator, and A S Rivlin, and A J Lewis, and B Schmoll
July 1982, Surgical neurology,
C H Tator, and A S Rivlin, and A J Lewis, and B Schmoll
June 2008, Zhongguo gu shang = China journal of orthopaedics and traumatology,
C H Tator, and A S Rivlin, and A J Lewis, and B Schmoll
January 2002, Journal of neuropathology and experimental neurology,
C H Tator, and A S Rivlin, and A J Lewis, and B Schmoll
January 2023, Environmental epigenetics,
Copied contents to your clipboard!