Fine structure of the Caenorhabditis elegans secretory-excretory system. 1983

F K Nelson, and P S Albert, and D L Riddle

The secretory-excretory system of C. elegans, reconstructed from serial-section electron micrographs of larvae, is composed of four cells, the nuclei of which are located on the ventral side of the pharynx and adjacent intestine. (1) The pore cell encloses the terminal one-third of the excretory duct which leads to an excretory pore at the ventral midline. (2) The duct cell surrounds the excretory duct with a lamellar membrane from the origin of the duct at the excretory sinus to the pore cell boundary. (3) A large H-shaped excretory cell extends bilateral canals anteriorly and posteriorly nearly the entire length of the worm. The excretory sinus within the cell body joins the lumena of the canals with the origin of the duct. (4) A binucleate, A-shaped gland cell extends bilateral processes anteriorly from cell bodies located just behind the pharynx. These processes are fused at the anterior tip of the cell, where the cell enters the circumpharyngeal nerve ring. The processes are also joined at the anterior edge of the excretory cell body, where the excretory cell and gland are joined to the duct cell at the origin of the duct. Secretory granules may be concentrated in the gland near this secretory-excretory junction. Although the gland cells of all growing developmental stages stain positively with paraldehyde-fuchsin, the gland of the dauer larva stage (a developmentally arrested third-stage larva) does not stain, nor do glands of starved worms of other stages. Dauer larvae uniquely lack secretory granules, and the gland cytoplasm is displaced by a labyrinth of large, transparent spaces. Exit from the dauer stage results in the return of active secretory morphology in fourth-stage larvae.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D007422 Intestines The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE. Intestine
D007814 Larva Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. Maggots,Tadpoles,Larvae,Maggot,Tadpole
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010614 Pharynx A funnel-shaped fibromuscular tube that conducts food to the ESOPHAGUS, and air to the LARYNX and LUNGS. It is located posterior to the NASAL CAVITY; ORAL CAVITY; and LARYNX, and extends from the SKULL BASE to the inferior border of the CRICOID CARTILAGE anteriorly and to the inferior border of the C6 vertebra posteriorly. It is divided into the NASOPHARYNX; OROPHARYNX; and HYPOPHARYNX (laryngopharynx). Throat,Pharynxs,Throats
D002107 Caenorhabditis A genus of small free-living nematodes. Two species, CAENORHABDITIS ELEGANS and C. briggsae are much used in studies of genetics, development, aging, muscle chemistry, and neuroanatomy. Caenorhabditides
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms

Related Publications

F K Nelson, and P S Albert, and D L Riddle
July 1984, The Journal of experimental zoology,
F K Nelson, and P S Albert, and D L Riddle
March 2004, Nature genetics,
F K Nelson, and P S Albert, and D L Riddle
March 2007, Journal of helminthology,
F K Nelson, and P S Albert, and D L Riddle
December 2002, The Journal of biological chemistry,
F K Nelson, and P S Albert, and D L Riddle
May 2009, Developmental biology,
F K Nelson, and P S Albert, and D L Riddle
November 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
F K Nelson, and P S Albert, and D L Riddle
January 1979, Genetics,
F K Nelson, and P S Albert, and D L Riddle
April 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
F K Nelson, and P S Albert, and D L Riddle
June 1982, Journal of molecular biology,
Copied contents to your clipboard!