Endocytosis of exogenous GM1 ganglioside and cholera toxin by neuroblastoma cells. 1983

N K Gonatas, and A Stieber, and J Gonatas, and T Mommoi, and P H Fishman

Cholera toxin (CT) covalently linked to horseradish peroxidase (HRP) is a specific cytochemical marker for its receptor, the monosialoganglioside GM1. The binding and endocytosis of exogenous [3H]GM1 by cultured murine neuroblastoma cells (line 2A [CCl-131] ), which contain predominantly GM3, was examined by quantitative electron microscope autoradiography. The relationship between exogenous receptor, [3H]GM1, and CT HRP was studied in double labeling experiments consisting of autoradiographic demonstration of [3H]GM1 and cytochemical visualization of HRP. Exogenous [3H]GM1 was not degraded after its endocytosis by cells for 2 h at 37 degrees C. Quantitative studies showed similar grain density distributions in cells treated with [3H]GM1 alone and in cells treated with [3H]GM1 followed by CT-HRP. Qualitative studies conducted in double labeling experiments showed autoradiographic grains over the peroxidase-stained plasma membrane, lysosomes, and vesicles at the trans aspect of the Golgi apparatus. The findings indicate that exogenous glycolipid is associated with the plasmid membrane of deficient cells and undergoes endocytosis. The quantitative ultra-structural autoradiographic studies are consistent with the hypothesis that the spontaneous endocytosis of exogenous [3H]GM1 controls the subsequent uptake of CT-HRP.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D009447 Neuroblastoma A common neoplasm of early childhood arising from neural crest cells in the sympathetic nervous system, and characterized by diverse clinical behavior, ranging from spontaneous remission to rapid metastatic progression and death. This tumor is the most common intraabdominal malignancy of childhood, but it may also arise from thorax, neck, or rarely occur in the central nervous system. Histologic features include uniform round cells with hyperchromatic nuclei arranged in nests and separated by fibrovascular septa. Neuroblastomas may be associated with the opsoclonus-myoclonus syndrome. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2099-2101; Curr Opin Oncol 1998 Jan;10(1):43-51) Neuroblastomas
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002772 Cholera Toxin An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells. Cholera Toxin A,Cholera Toxin B,Cholera Toxin Protomer A,Cholera Toxin Protomer B,Cholera Toxin Subunit A,Cholera Toxin Subunit B,Choleragen,Choleragenoid,Cholera Enterotoxin CT,Cholera Exotoxin,Cholera Toxin A Subunit,Cholera Toxin B Subunit,Procholeragenoid,Enterotoxin CT, Cholera,Exotoxin, Cholera,Toxin A, Cholera,Toxin B, Cholera,Toxin, Cholera
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D005677 G(M1) Ganglioside A specific monosialoganglioside that accumulates abnormally within the nervous system due to a deficiency of GM1-b-galactosidase, resulting in GM1 gangliosidosis. GM1 Ganglioside,Monosialosyl Tetraglycosyl Ceramide,GM1a Monosialoganglioside,Ceramide, Monosialosyl Tetraglycosyl,Ganglioside, GM1,Monosialoganglioside, GM1a,Tetraglycosyl Ceramide, Monosialosyl
D005732 Gangliosides A subclass of ACIDIC GLYCOSPHINGOLIPIDS. They contain one or more sialic acid (N-ACETYLNEURAMINIC ACID) residues. Using the Svennerholm system of abbrevations, gangliosides are designated G for ganglioside, plus subscript M, D, or T for mono-, di-, or trisialo, respectively, the subscript letter being followed by a subscript arabic numeral to indicated sequence of migration in thin-layer chromatograms. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1997) Ganglioside,Sialoglycosphingolipids
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish

Related Publications

N K Gonatas, and A Stieber, and J Gonatas, and T Mommoi, and P H Fishman
February 2018, PLoS pathogens,
N K Gonatas, and A Stieber, and J Gonatas, and T Mommoi, and P H Fishman
January 1973, Scandinavian journal of infectious diseases,
N K Gonatas, and A Stieber, and J Gonatas, and T Mommoi, and P H Fishman
September 1977, Proceedings of the National Academy of Sciences of the United States of America,
N K Gonatas, and A Stieber, and J Gonatas, and T Mommoi, and P H Fishman
February 1974, Science (New York, N.Y.),
N K Gonatas, and A Stieber, and J Gonatas, and T Mommoi, and P H Fishman
January 1984, Journal of neuroscience research,
N K Gonatas, and A Stieber, and J Gonatas, and T Mommoi, and P H Fishman
August 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience,
N K Gonatas, and A Stieber, and J Gonatas, and T Mommoi, and P H Fishman
March 1992, Biochemistry,
N K Gonatas, and A Stieber, and J Gonatas, and T Mommoi, and P H Fishman
February 2004, Journal of the American Chemical Society,
N K Gonatas, and A Stieber, and J Gonatas, and T Mommoi, and P H Fishman
April 2008, Infection and immunity,
N K Gonatas, and A Stieber, and J Gonatas, and T Mommoi, and P H Fishman
June 2004, Biophysical journal,
Copied contents to your clipboard!