Isolation, identification, and characterization of histones from plasmodia of the true slime mold Physarum polycephalum using extraction with guanidine hydrochloride. 1983

L M Mende, and J H Waterborg, and R D Mueller, and H R Matthews

Histones from plasmodia of the true slime mold Physarum polycephalum have been prepared free of slime by an approach to histone isolation that uses extraction of nuclei with 40% guanidine hydrochloride and chromatography of the extract on Bio-Rex 70. This procedure followed by chromatography or electrophoresis has been used to obtain pure fractions of histones from Physarum microplasmodia. Physarum microplasmodia have five major histone fractions, and we show by amino acid analysis, apparent molecular weight on three gel systems containing sodium dodecyl sulfate, mobility on gels containing Triton X-100, and other characterizations that these fractions are analogous to mammalian histones H1, H2A, H2B, H3, and H4. Significant differences between Physarum and mammalian histones are noted, with histone H1 showing by far the greatest variation. Histones H1 and H4 from Physarum microplasmodia have similar, but not identical, products of partial chymotryptic digestion compared with those of calf thymus histones H1 and H4. Labeling experiments, in vivo, showed that histone H1 is the major phosphorylated histone and approximately 15 separate phosphopeptides are present in a tryptic digest of Physarum histone H1. The core histones from Physarum, histones H2A, H2B, H3, and H4, are rapidly acetylated; histone H4 shows five subfractions, analogous to the five subfractions of mammalian histone H4 (containing zero to four acetyllysine residues per molecule); histone H3 has a more complex pattern that we interpret as zero to four acetyllysine residues on each of two sequence variants of histone H3; histones H2A and H2B show less heterogeneity. Overall, the data show that Physarum microplasmodia have a set of histones that is closely analogous to mammalian histones.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010804 Physarum A genus of protozoa, formerly also considered a fungus. Characteristics include the presence of violet to brown spores. Physarums
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006146 Guanidines A family of iminourea derivatives. The parent compound has been isolated from mushrooms, corn germ, rice hulls, mussels, earthworms, and turnip juice. Derivatives may have antiviral and antifungal properties.
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical
D019791 Guanidine A strong organic base existing primarily as guanidium ions at physiological pH. It is found in the urine as a normal product of protein metabolism. It is also used in laboratory research as a protein denaturant. (From Martindale, the Extra Pharmacopoeia, 30th ed and Merck Index, 12th ed) It is also used in the treatment of myasthenia and as a fluorescent probe in HPLC. Guanidine Hydrochloride,Guanidinium,Guanidinium Chloride,Guanidine Monohydrate,Guanidine Monohydrobromide,Guanidine Monohydrochloride,Guanidine Monohydroiodine,Guanidine Nitrate,Guanidine Phosphate,Guanidine Sulfate,Guanidine Sulfate (1:1),Guanidine Sulfate (2:1),Guanidine Sulfite (1:1),Guanidium Chloride,Chloride, Guanidinium,Chloride, Guanidium,Hydrochloride, Guanidine,Monohydrate, Guanidine,Monohydrobromide, Guanidine,Monohydrochloride, Guanidine,Monohydroiodine, Guanidine,Nitrate, Guanidine,Phosphate, Guanidine,Sulfate, Guanidine

Related Publications

L M Mende, and J H Waterborg, and R D Mueller, and H R Matthews
August 1982, European journal of biochemistry,
L M Mende, and J H Waterborg, and R D Mueller, and H R Matthews
January 1995, Advances in experimental medicine and biology,
L M Mende, and J H Waterborg, and R D Mueller, and H R Matthews
November 1990, The Journal of biological chemistry,
L M Mende, and J H Waterborg, and R D Mueller, and H R Matthews
May 1977, Biokhimiia (Moscow, Russia),
L M Mende, and J H Waterborg, and R D Mueller, and H R Matthews
May 1988, Cytometry,
L M Mende, and J H Waterborg, and R D Mueller, and H R Matthews
February 1996, Biochimica et biophysica acta,
L M Mende, and J H Waterborg, and R D Mueller, and H R Matthews
May 1965, The Journal of cell biology,
L M Mende, and J H Waterborg, and R D Mueller, and H R Matthews
May 1979, European journal of biochemistry,
L M Mende, and J H Waterborg, and R D Mueller, and H R Matthews
July 1973, Biochimica et biophysica acta,
L M Mende, and J H Waterborg, and R D Mueller, and H R Matthews
June 1977, Biokhimiia (Moscow, Russia),
Copied contents to your clipboard!