Effect of phospholipase A on actions of cobra venom cardiotoxins on erythrocytes and skeletal muscle. 1983

A L Harvey, and R C Hider, and F Khader

The actions of two phospholipase-free cardiotoxins from the venom of the cobra Naja naja siamensis were compared to phospholipase-contaminated cardiotoxins in terms of their ability to lyse human erythrocytes and to depolarize and contract skeletal muscle. The presence of 3-5% (w/w) phospholipase caused a 20-30-fold increase in the haemolytic activity of the two cardiotoxins, the pure cardiotoxins being virtually without haemolytic activity at 10(-7)-10(-6) M. Phospholipase contamination did not enhance the ability of the cardiotoxins to cause contracture of chick biventer cervicis muscles and it caused less than a 2-fold increase in the depolarizing activity of the cardiotoxins on cultured skeletal muscle. Phospholipase-free cardiotoxins were about 10-20 times more active on cultured skeletal muscle fibres than on erythrocytes. These results support the hypothesis that some cardiotoxins have more affinity for the membranes of excitable cells than for those of other cells such as erythrocytes.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010740 Phospholipases A class of enzymes that catalyze the hydrolysis of phosphoglycerides or glycerophosphatidates. EC 3.1.-. Lecithinases,Lecithinase,Phospholipase
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004179 Cobra Cardiotoxin Proteins Most abundant proteins in COBRA venom; basic polypeptides of 57 to 62 amino acids with four disulfide bonds and a molecular weight of less than 7000; causes skeletal and cardiac muscle contraction, interferes with neuromuscular and ganglionic transmission, depolarizes nerve, muscle and blood cell membranes, thus causing hemolysis. Cobra Cardiotoxin,Direct Lytic Factors,Cardiotoxin I,Cardiotoxin II,Cardiotoxin VII 4,Cardiotoxin VII2,Cardiotoxin-Like Basic Polypeptide,Cardiotoxins, Elapid,Cobra Cytotoxin Proteins,Cobra Toxin Gamma,Cobra Venom Cardiotoxin D,Cytotoxin-Like Basic Protein (Cobra Venom),Basic Polypeptide, Cardiotoxin-Like,Cardiotoxin Like Basic Polypeptide,Cardiotoxin Proteins, Cobra,Cardiotoxin, Cobra,Cytotoxin Proteins, Cobra,Elapid Cardiotoxins,Lytic Factors, Direct,Polypeptide, Cardiotoxin-Like Basic,Toxin Gamma, Cobra
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D004546 Elapid Venoms Venoms from snakes of the family Elapidae, including cobras, kraits, mambas, coral, tiger, and Australian snakes. The venoms contain polypeptide toxins of various kinds, cytolytic, hemolytic, and neurotoxic factors, but fewer enzymes than viper or crotalid venoms. Many of the toxins have been characterized. Cobra Venoms,Elapidae Venom,Elapidae Venoms,Naja Venoms,Cobra Venom,Elapid Venom,Hydrophid Venom,Hydrophid Venoms,King Cobra Venom,Naja Venom,Ophiophagus hannah Venom,Sea Snake Venom,Sea Snake Venoms,Venom, Cobra,Venom, Elapid,Venom, Elapidae,Venom, Hydrophid,Venom, King Cobra,Venom, Naja,Venom, Ophiophagus hannah,Venom, Sea Snake,Venoms, Cobra,Venoms, Elapid,Venoms, Elapidae,Venoms, Hydrophid,Venoms, Naja,Venoms, Sea Snake

Related Publications

A L Harvey, and R C Hider, and F Khader
October 1984, Biochemical and biophysical research communications,
A L Harvey, and R C Hider, and F Khader
May 1981, Biochemical and biophysical research communications,
A L Harvey, and R C Hider, and F Khader
August 1965, British journal of pharmacology and chemotherapy,
A L Harvey, and R C Hider, and F Khader
April 1991, Biochemistry and cell biology = Biochimie et biologie cellulaire,
A L Harvey, and R C Hider, and F Khader
September 1977, Journal of invertebrate pathology,
A L Harvey, and R C Hider, and F Khader
September 1959, British journal of pharmacology and chemotherapy,
A L Harvey, and R C Hider, and F Khader
January 1982, Toxicon : official journal of the International Society on Toxinology,
A L Harvey, and R C Hider, and F Khader
June 1993, Toxicon : official journal of the International Society on Toxinology,
A L Harvey, and R C Hider, and F Khader
October 1982, Archives of biochemistry and biophysics,
A L Harvey, and R C Hider, and F Khader
August 1980, Biochimica et biophysica acta,
Copied contents to your clipboard!