Ionization collection efficiencies of some ionization chambers in pulsed and continuous radiation beams. 1978

J G Holt, and R E Stanton, and R E Sell

The most commonly used method of calibrating high-energy photon or electron beams consists in converting cavity ionization to dose by the application of the appropriate Clambda or CE multipled by the 60Co correction factor. The correct interpretation of calibration data for pulsed photon or electron beams requires a knowledge of the charge collection efficiencies of the ionization chambers used. The results are presented of efficiency measurements for both pulsed and continuous beams made with these chambers: 0.6-cm3 Farmer, 0.5-cm3 Spokas, 3-cm3 Shonka, 1-cm3 PTW, and 1-cm3 Memorial pancake. The dependence of collection efficiency on collection voltage, dose rate, and dose per pulse is demonstrated. These results are shown to agree with Boag's formulas for collection efficiency. Attention is drawn to the fact that several kinds of dosimeters provide only minimal collection voltages for efficient collection of charge at high dose rates, especially in Linac electron beams. It is recommended to check the collection efficiency of chambers which are to be used at high dose rates, and a simple method for this purpose is described.

UI MeSH Term Description Entries
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D011829 Radiation Dosage The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv). Sievert Units,Dosage, Radiation,Gray Units,Gy Radiation,Sv Radiation Dose Equivalent,Dosages, Radiation,Radiation Dosages,Units, Gray,Units, Sievert
D011839 Radiation, Ionizing ELECTROMAGNETIC RADIATION or particle radiation (high energy ELEMENTARY PARTICLES) capable of directly or indirectly producing IONS in its passage through matter. The wavelengths of ionizing electromagnetic radiation are equal to or smaller than those of short (far) ultraviolet radiation and include gamma and X-rays. Ionizing Radiation,Ionizing Radiations,Radiations, Ionizing
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D003037 Cobalt Radioisotopes Unstable isotopes of cobalt that decay or disintegrate emitting radiation. Co atoms with atomic weights of 54-64, except 59, are radioactive cobalt isotopes. Radioisotopes, Cobalt
D004583 Electrons Stable elementary particles having the smallest known negative charge, present in all elements; also called negatrons. Positively charged electrons are called positrons. The numbers, energies and arrangement of electrons around atomic nuclei determine the chemical identities of elements. Beams of electrons are called CATHODE RAYS. Fast Electrons,Negatrons,Positrons,Electron,Electron, Fast,Electrons, Fast,Fast Electron,Negatron,Positron
D005720 Gamma Rays Penetrating, high-energy electromagnetic radiation emitted from atomic nuclei during NUCLEAR DECAY. The range of wavelengths of emitted radiation is between 0.1 - 100 pm which overlaps the shorter, more energetic hard X-RAYS wavelengths. The distinction between gamma rays and X-rays is based on their radiation source. Gamma Wave,Gamma Radiation,Nuclear X-Rays,Radiation, Gamma,X-Rays, Nuclear,Gamma Radiations,Gamma Ray,Gamma Waves,Nuclear X Rays,Nuclear X-Ray,Ray, Gamma,Wave, Gamma,Waves, Gamma,X Rays, Nuclear,X-Ray, Nuclear

Related Publications

J G Holt, and R E Stanton, and R E Sell
May 2000, Medical physics,
J G Holt, and R E Stanton, and R E Sell
January 2015, Polish journal of radiology,
J G Holt, and R E Stanton, and R E Sell
February 2021, Physics in medicine and biology,
J G Holt, and R E Stanton, and R E Sell
May 1980, The British journal of radiology,
J G Holt, and R E Stanton, and R E Sell
March 2017, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB),
J G Holt, and R E Stanton, and R E Sell
November 1970, Nihon Igaku Hoshasen Gakkai zasshi. Nippon acta radiologica,
J G Holt, and R E Stanton, and R E Sell
July 1969, Physics in medicine and biology,
Copied contents to your clipboard!