Flagellar adhesion in Chlamydomonas induces synthesis of two high molecular weight cell surface proteins. 1983

W J Snell, and A Clausell, and W S Moore

Because our previous studies (Snell, W.J., and W.S. Moore, 1980, J. Cell Biol. 84:203- 210) on the mating reaction of chlamydomonas reinhardtii showed that there was an adhesion-induced turnover of proteins whose synthesis is induced during aggregation. Analysis by SDS PAGE and autoradiography showed that proteins of 220,000 M(r) and 165, 000 M(r) (designated A(1) and A(2) respectively) consistently showed a high rate of synthesis only in flagella or flagellar membrane-enriched fractions prepared from aggregating gametes. Since the two proteins were soluble in the non-ionic detergent NP-40 and were removed from intact cells by a brief pronase treatment, it is likely that A(1) and A(2) are membrane proteins expose on the cell surface. A(1) and A(2) were each synthesized by gametes of both mating types (mt(-) and mt(+)) and synthesis of these two proteins could be detected in the normal mating reaction (wild type mt(-) and mt(+)), in mixtures of mt(-) and impotent mt(+) gametes (which could aggregate but not fuse), and in mixtures of gametes of a single mating type with isolated flagella of the opposite mating type. Cells aggregating in tunicamycin, an inhibitor of protein glycosylation, lost their adhesiveness during aggregation and did not synthesize the 220,000 M(r) protein but instead produced a protein (possibly an underglycosylated form of A(1)) of slightly lower mol wt. The 220,000 and 165,000 M(R) proteins appeared to be flagellar proteins and not cell wall proteins because A(1) and A(2) did not co-migrate with previously identified cell wall proteins, and synthesis of the two proteins could not be detected in flagella-less (bald-2) mutant cells. Analysis of the adhesive activity of sucrose gradient fraction of detergent (octyl glucoside)-solubilized flagellar membranes revealed that fractions containing A(1) and A(2) did not have detectable adhesive activity. The possibility remains that A(1) and A(2) are adhesion molecules whose activity could not be measured in the assay we used. Alternatively, the 220,000 and 165,000 M(r) proteins may be inactivated adhesion molecules or else they may be flagellar surface proteins involved only indirectly in the adhesion process.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D011402 Pronase A proteolytic enzyme obtained from Streptomyces griseus. Pronase E,Pronase P,Protease XIV,XIV, Protease
D002473 Cell Wall The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents. Cell Walls,Wall, Cell,Walls, Cell
D002696 Chlamydomonas A genus GREEN ALGAE in the order VOLVOCIDA. It consists of solitary biflagellated organisms common in fresh water and damp soil. Chlamydomona
D005407 Flagella A whiplike motility appendage present on the surface cells. Prokaryote flagella are composed of a protein called FLAGELLIN. Bacteria can have a single flagellum, a tuft at one pole, or multiple flagella covering the entire surface. In eukaryotes, flagella are threadlike protoplasmic extensions used to propel flagellates and sperm. Flagella have the same basic structure as CILIA but are longer in proportion to the cell bearing them and present in much smaller numbers. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Flagellum
D000268 Adhesiveness A property of the surface of an object that makes it stick to another surface. Adhesivenesses
D014415 Tunicamycin An N-acetylglycosamine containing antiviral antibiotic obtained from Streptomyces lysosuperificus. It is also active against some bacteria and fungi, because it inhibits the glucosylation of proteins. Tunicamycin is used as tool in the study of microbial biosynthetic mechanisms.

Related Publications

W J Snell, and A Clausell, and W S Moore
January 1995, Methods in cell biology,
W J Snell, and A Clausell, and W S Moore
June 1982, The Journal of cell biology,
W J Snell, and A Clausell, and W S Moore
January 1995, Methods in cell biology,
W J Snell, and A Clausell, and W S Moore
January 1984, Cell motility,
W J Snell, and A Clausell, and W S Moore
February 1997, Rinsho byori. The Japanese journal of clinical pathology,
W J Snell, and A Clausell, and W S Moore
September 1979, The Journal of cell biology,
W J Snell, and A Clausell, and W S Moore
April 1982, The Journal of cell biology,
W J Snell, and A Clausell, and W S Moore
August 1980, The Journal of cell biology,
W J Snell, and A Clausell, and W S Moore
December 1970, The Journal of cell biology,
Copied contents to your clipboard!