Reperfusion of ischemic myocardium: ultrastructural and histochemical aspects. 1983

J Schaper, and W Schaper

The effects of reperfusion on ischemic myocardium generally depend on the severity of the preceding ischemic injury. Reperfusion of myocardium, irreversibly injured by ischemia, produces further progression of myocardial necrosis that is accompanied by simultaneously occurring stimulation of interstitial cell proliferation resulting in scar formation. Reperfusion of reversibly injured myocardium leads to structural improvement and reorganization. Thus, it may be stated from the ultrastructural part of this study that reperfusion of ischemic myocardium induces 1) slow structural recuperation after reversible injury, and 2) accelerated cellular destruction and symptoms of scar formation after irreversible ischemic injury. We observed that the reduced tissue content of nicotinamide adenine dinucleotide (NAD), rather than reduced dehydrogenase activity, is the basis of histochemical reactions employing tetrazolium salts. Directly measured NAD tissue content in ischemic tissue correlated well with the degree of ultrastructural injury and with macroscopic differential staining. Occlusion of two small coronary arteries in the same heart followed by reperfusion of only one artery (identical occlusion times for both arteries) showed identical infarct sizes for reperfused and nonreperfused myocardium for occlusion times of 3 and 6 hours. When the effects of occlusion times of less than 3 hours are studied with tetrazolium salts, a difficult technical problem arises: during that time, tissue-NAD concentrations have not decreased enough to enable differential staining. Reperfusion leads to washout of NAD, thus producing differential staining; this may be a harmful effect of reperfusion. However, because early reperfusion leads to significant structural and functional recovery and to small infarcts, reperfusion injury is unlikely to occur. Both ultrastructural and histochemical evidence suggest that reperfusion is beneficial for reversibly injured tissue but accelerates the decay of irreversibly injured tissue.

UI MeSH Term Description Entries
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D009203 Myocardial Infarction NECROSIS of the MYOCARDIUM caused by an obstruction of the blood supply to the heart (CORONARY CIRCULATION). Cardiovascular Stroke,Heart Attack,Myocardial Infarct,Cardiovascular Strokes,Heart Attacks,Infarct, Myocardial,Infarction, Myocardial,Infarctions, Myocardial,Infarcts, Myocardial,Myocardial Infarctions,Myocardial Infarcts,Stroke, Cardiovascular,Strokes, Cardiovascular
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009336 Necrosis The death of cells in an organ or tissue due to disease, injury or failure of the blood supply.
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog

Related Publications

J Schaper, and W Schaper
August 1977, Journal of molecular and cellular cardiology,
J Schaper, and W Schaper
January 1977, Surgical forum,
J Schaper, and W Schaper
April 1983, Journal of molecular and cellular cardiology,
J Schaper, and W Schaper
May 1973, The American journal of pathology,
J Schaper, and W Schaper
March 1969, The American journal of anatomy,
J Schaper, and W Schaper
January 1968, Pathologia Europaea,
J Schaper, and W Schaper
January 1992, Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology,
Copied contents to your clipboard!