Effects of prolactin on testosterone-induced growth and protein synthesis in rat accessory sex glands. 1983

R Jones, and P R Riding, and M G Parker

The relative importance of testosterone and prolactin in regulating growth and protein synthesis in rat accessory sex glands has been investigated. Protein synthesis was measured by incubating tissue minces in vitro with [35S]methionine and analysing labelled proteins on polyacrylamide gels containing sodium dodecyl sulphate. Plasma prolactin was assayed by radioimmunoassay. Results showed that castration for 8 days significantly reduced wet weights and total protein synthesis in the ventral prostate, dorsolateral prostate and caput epididymidis, but that these effects could be reversed by exogenous testosterone. Similarly, the specific incorporation of [35S]methionine into four polypeptides in the ventral prostate, two polypeptides in the dorsolateral prostate and two polypeptides in the caput epididymidis was lowered by castration but markedly stimulated by testosterone. Acute or chronic administration of 2-bromo-alpha-ergocryptine to animals in combination with testosterone had no significant effect on any of the parameters measured, although the drug reduced circulating prolactin to undetectable levels. In addition, exogenous prolactin given alone, or in combination with testosterone, to hypophysectomized rats had no effect on general or specific protein synthesis. The induction of hyperprolactinaemia in immature or mature rats with pituitary homographs had no effect on testosterone-stimulated growth of any accessory gland, although it caused a significant stimulation of total protein synthesis in the dorsolateral prostate and coagulating glands. However, this was a generalized effect as it did not increase the specific incorporation of [35S]methionine into androgen-dependent proteins. The results do not indicate a major role for prolactin in regulating androgen responsiveness of male accessory sex glands in the rat.

UI MeSH Term Description Entries
D007016 Hypophysectomy Surgical removal or destruction of the hypophysis, or pituitary gland. (Dorland, 28th ed) Hypophysectomies
D008297 Male Males
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001971 Bromocriptine A semisynthetic ergotamine alkaloid that is a dopamine D2 agonist. It suppresses prolactin secretion. 2-Bromoergocryptine,Bromocryptin,2-Bromo-alpha-ergocryptine,2-Bromo-alpha-ergokryptine,2-Bromoergocryptine Mesylate,2-Bromoergocryptine Methanesulfonate,2-Bromoergokryptine,Bromocriptin,Bromocriptine Mesylate,CB-154,Parlodel,2 Bromo alpha ergocryptine,2 Bromo alpha ergokryptine,2 Bromoergocryptine,2 Bromoergocryptine Mesylate,2 Bromoergocryptine Methanesulfonate,2 Bromoergokryptine,CB 154,CB154,Mesylate, 2-Bromoergocryptine,Mesylate, Bromocriptine,Methanesulfonate, 2-Bromoergocryptine
D002369 Castration Surgical removal or artificial destruction of gonads. Gonadectomy,Castrations,Gonadectomies
D005837 Genitalia, Male The male reproductive organs. They are divided into the external organs (PENIS; SCROTUM; and URETHRA) and the internal organs (TESTIS; EPIDIDYMIS; VAS DEFERENS; SEMINAL VESICLES; EJACULATORY DUCTS; PROSTATE; and BULBOURETHRAL GLANDS). Accessory Sex Organs, Male,Genital Organs, Male,Sex Organs, Accessory, Male,Genitals, Male,Reproductive System, Male,Genital, Male,Male Genital,Male Genital Organs,Male Genitalia,Male Genitals,Male Reproductive System,Male Reproductive Systems,Reproductive Systems, Male
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013739 Testosterone A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL. 17-beta-Hydroxy-4-Androsten-3-one,17-beta-Hydroxy-8 alpha-4-Androsten-3-one,8-Isotestosterone,AndroGel,Androderm,Andropatch,Androtop,Histerone,Sterotate,Sustanon,Testim,Testoderm,Testolin,Testopel,Testosterone Sulfate,17 beta Hydroxy 4 Androsten 3 one,17 beta Hydroxy 8 alpha 4 Androsten 3 one,8 Isotestosterone
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

R Jones, and P R Riding, and M G Parker
January 1975, The Journal of endocrinology,
R Jones, and P R Riding, and M G Parker
December 1972, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
R Jones, and P R Riding, and M G Parker
July 1981, Endocrinology,
R Jones, and P R Riding, and M G Parker
June 1973, Journal of reproduction and fertility,
R Jones, and P R Riding, and M G Parker
October 1968, Endocrinology,
R Jones, and P R Riding, and M G Parker
January 1988, Andrologia,
R Jones, and P R Riding, and M G Parker
August 1972, The Journal of endocrinology,
Copied contents to your clipboard!