Response of cat semicircular canal afferents to sinusoidal polarizing currents: implications for input-output properties of second-order neurons. 1983

K Ezure, and M S Cohen, and V J Wilson

1. We studied the response of cat vestibular afferents, most likely innervating the semicircular canals, to sinusoidal polarizing currents applied to an electrode implanted near the horizontal ampulla. 2. Electrode implantation abolished responses to natural stimulation and reduced the level of resting activity compared to a population of afferents from unimplanted animals. The distribution of coefficients of variation of resting activity was, however, similar to that seen when the labyrinth is intact. 3. Many fibers were modulated sinusoidally by polarizing currents in the frequency range 0.175-4 Hz. Phase was mainly constant and typically led stimulus negativity by approximately 14 degrees, although about half the regular fibers had a phase lead that increased with frequency. Mean sensitivity (spikes X s-1 X microA-1) of regular and irregular fibers increased by a factor of about 1.5 over the frequency studied. Absolute sensitivity was about 7 times higher for irregular than for regular fibers. The overall behavior of the afferents could be well described by a transfer function in the form, sk, with 0 less than k less than 1. 4. We compared the response of afferent fibers to sinusoidal current with the response of second-order neurons studied under similar conditions in earlier experiments (15, 23). While the slopes of the sensitivities were similar, second-order neurons developed a phase advance over afferents at frequencies around 1 Hz. This difference in dynamics can be described by a transfer function in the form tau S + 1, with tau = 12 ms. This predicts that second-order neurons can develop a phase lead of about 25 degrees with respect to afferents at 6 Hz, a frequency still in the physiological range. It remains to be determined whether this applies to a particular subset of second-order neurons contributing to vestibulocollic reflexes.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009333 Neck The part of a human or animal body connecting the HEAD to the rest of the body. Necks
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003052 Cochlear Aqueduct A fine channel that passes through the TEMPORAL BONE near the SCALA TYMPANI (the basilar turn of the cochlea). The cochlear aqueduct connects the PERILYMPH-filled bony labyrinth to the SUBARACHNOID SPACE. Perilymphatic Duct,Aqueduct, Cochlear,Aqueducts, Cochlear,Cochlear Aqueducts,Duct, Perilymphatic,Ducts, Perilymphatic,Perilymphatic Ducts
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Ezure, and M S Cohen, and V J Wilson
September 1978, Experimental brain research,
K Ezure, and M S Cohen, and V J Wilson
January 1976, Transactions. Section on Otolaryngology. American Academy of Ophthalmology and Otolaryngology,
K Ezure, and M S Cohen, and V J Wilson
September 2001, Experimental brain research,
K Ezure, and M S Cohen, and V J Wilson
December 2002, Experimental brain research,
K Ezure, and M S Cohen, and V J Wilson
March 2001, Experimental brain research,
K Ezure, and M S Cohen, and V J Wilson
January 1984, Experimental brain research,
K Ezure, and M S Cohen, and V J Wilson
January 1974, Experimental brain research,
K Ezure, and M S Cohen, and V J Wilson
October 1972, Brain research,
K Ezure, and M S Cohen, and V J Wilson
March 1972, Journal of neurophysiology,
Copied contents to your clipboard!