Response properties of visual cortical neurons in cats reared in stroboscopic illumination. 1983

H Kennedy, and G A Orban

1. The response properties of 182 units were studied in the primary visual cortices (155 in area 18 and 27 in area 17) in eight cats reared from birth in a stroboscopically illuminated environment (frequency, 2/s; duration, 200 microseconds). Multihistogram quantitative testing was carried out in 82 units (64 in area 18 and 18 in area 17). Two hundred three neurons recorded and quantitatively tested in areas 17 and 18 of the normal adult cat were used for comparison. 2. Spatial characteristics of receptive fields investigated using hand-held stimuli were found to be abnormal. The correlation between receptive-field width and eccentricity was lost in area 18 and consequently, receptive fields were significantly wider in area 18 subserving central vision. Cells could be classified according to the spatial characteristics of their receptive fields. There was a much smaller proportion of end-stopped cells in strobe-reared animals. Orientation tuning in the deprived animals was normal except for a small number of cells that showed no selectivity for stimulus orientation. 3. Compilation of velocity-response curves made it possible to classify areas 17 and 18 neurons into four categories: velocity low-pass, velocity broad-band, velocity tuned, and velocity high-pass cells. The proportion of velocity high-pass cells was reduced in area 18 subserving peripheral vision, as was the proportion of velocity-tuned cells in area 18 subserving central vision. 4. In the strobe-reared animal velocity sensitivity was somewhat different from that of the normal animal. Neurons in area 18 subserving the peripheral visual field failed to respond to fast velocities. Neurons in area 17 subserving the central visual field in strobe-reared animals responded to slightly higher velocities than in the normal animal. 5. In the deprived animals the number of neurons that were selective to the direction of motion was strongly reduced. The majority of neurons failed to show a selectivity for direction at all velocities. A number of neurons could be directional at some velocities but were unreliable, since they inverted their preferred direction with velocity changes. 6. Binocular convergence onto visual cortical cells was perturbed. In area 18 the majority of neurons were driven by the contralateral eye. In area 17 most neurons could be driven only by either the ipsilateral or contralateral eye. 7. Quantitative testing (of direction selectivity, sensitivity to high velocities, response latency, and strength) and qualitative testing (receptive-field width, end stopping, and ocular dominance) showed that the normal influence of eccentricity on functional properties was strongly reduced by strobe rearing.

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009799 Ocular Physiological Phenomena Processes and properties of the EYE as a whole or of any of its parts. Ocular Physiologic Processes,Ocular Physiological Processes,Ocular Physiology,Eye Physiology,Ocular Physiologic Process,Ocular Physiological Concepts,Ocular Physiological Phenomenon,Ocular Physiological Process,Physiology of the Eye,Physiology, Ocular,Visual Physiology,Concept, Ocular Physiological,Concepts, Ocular Physiological,Ocular Physiological Concept,Phenomena, Ocular Physiological,Phenomenon, Ocular Physiological,Physiologic Process, Ocular,Physiologic Processes, Ocular,Physiological Concept, Ocular,Physiological Concepts, Ocular,Physiological Process, Ocular,Physiological Processes, Ocular,Physiology, Eye,Physiology, Visual,Process, Ocular Physiologic,Process, Ocular Physiological,Processes, Ocular Physiologic,Processes, Ocular Physiological
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014794 Visual Fields The total area or space visible in a person's peripheral vision with the eye looking straightforward. Field, Visual,Fields, Visual,Visual Field

Related Publications

H Kennedy, and G A Orban
May 1987, Journal of neurophysiology,
H Kennedy, and G A Orban
May 1973, Proceedings of the National Academy of Sciences of the United States of America,
H Kennedy, and G A Orban
April 1974, Brain research,
H Kennedy, and G A Orban
January 1982, Experimental brain research,
H Kennedy, and G A Orban
January 1983, Neuroscience and behavioral physiology,
H Kennedy, and G A Orban
August 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
H Kennedy, and G A Orban
April 1970, Electroencephalography and clinical neurophysiology,
H Kennedy, and G A Orban
December 1973, Nature: New biology,
Copied contents to your clipboard!