Consensus structure and evolution of 5S rRNA. 1983

H Küntzel, and B Piechulla, and U Hahn

A consensus structure model of 5S rRNA presenting all conserved nucleotides in fixed positions has been deduced from the primary and secondary structure of 71 eubacterial, archaebacterial, eukaryotic cytosolic and organellar molecules. Phylogenetically related groups of molecules are characterized by nucleotide deletions in helices III, IV and V, and by potential base pair interactions in helix IV. The group-specific deletions are correlated with the early branching pattern of a dendrogram calculated from nucleotide substitution data: the first major division separates the group of eubacterial and organellar molecules from a second group containing the common ancestors of archaebacterial and eukaryotic/cytosolic molecules. The earliest diverging branch of the eubacterial/organellar group includes molecules from Thermus thermophilus, T. aquaticus, Rhodospirillum rubrum, Paracoccus denitrificans and wheat mitochondria.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

H Küntzel, and B Piechulla, and U Hahn
January 1990, Postepy biochemii,
H Küntzel, and B Piechulla, and U Hahn
January 1987, Journal of molecular evolution,
H Küntzel, and B Piechulla, and U Hahn
January 2001, Acta biochimica Polonica,
H Küntzel, and B Piechulla, and U Hahn
August 1991, Journal of molecular evolution,
H Küntzel, and B Piechulla, and U Hahn
January 1986, Bio Systems,
H Küntzel, and B Piechulla, and U Hahn
April 1991, Nucleic acids research,
H Küntzel, and B Piechulla, and U Hahn
January 1997, Nucleic acids research,
H Küntzel, and B Piechulla, and U Hahn
January 1988, Nucleic acids research,
H Küntzel, and B Piechulla, and U Hahn
April 1990, Nucleic acids research,
H Küntzel, and B Piechulla, and U Hahn
January 1995, Molekuliarnaia biologiia,
Copied contents to your clipboard!