Comparison between the tuning properties of inner hair cells and basilar membrane motion. 1983

P M Sellick, and R Patuzzi, and B M Johnstone

Measurements were made of inner hair cell receptor potentials and basilar membrane motion in the 17-21 kHz region of the guinea pig cochlea. The latter were made using the Mossbauer technique. Isoamplitude curves at 0.9 mV d.c. receptor potential were compared with isovelocity curves at 0.04 mm/s and the corresponding basilar membrane displacement at CF. The Mossbauer source (20 X 60 or 60 X 85 microns) was placed either in the middle of the basilar membrane or on the extreme modiolar edge. These two source positions yielded broad and narrow mechanical tuning curves, respectively. The latter approximated the receptor potential curves most closely but deviated by 10-15 dB on the low frequency side of the tuning curve tip.

UI MeSH Term Description Entries
D007758 Ear, Inner The essential part of the hearing organ consists of two labyrinthine compartments: the bony labyrinthine and the membranous labyrinth. The bony labyrinth is a complex of three interconnecting cavities or spaces (COCHLEA; VESTIBULAR LABYRINTH; and SEMICIRCULAR CANALS) in the TEMPORAL BONE. Within the bony labyrinth lies the membranous labyrinth which is a complex of sacs and tubules (COCHLEAR DUCT; SACCULE AND UTRICLE; and SEMICIRCULAR DUCTS) forming a continuous space enclosed by EPITHELIUM and connective tissue. These spaces are filled with LABYRINTHINE FLUIDS of various compositions. Labyrinth,Bony Labyrinth,Ear, Internal,Inner Ear,Membranous Labyrinth,Bony Labyrinths,Ears, Inner,Ears, Internal,Inner Ears,Internal Ear,Internal Ears,Labyrinth, Bony,Labyrinth, Membranous,Labyrinths,Labyrinths, Bony,Labyrinths, Membranous,Membranous Labyrinths
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006198 Hair Cells, Auditory Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound. Auditory Hair Cells,Cochlear Hair Cells,Auditory Hair Cell,Cell, Cochlear Hair,Cells, Cochlear Hair,Cochlear Hair Cell,Hair Cell, Auditory,Hair Cell, Cochlear,Hair Cells, Cochlear
D006199 Hair Cells, Auditory, Inner Auditory sensory cells of organ of Corti, usually placed in one row medially to the core of spongy bone (the modiolus). Inner hair cells are in fewer numbers than the OUTER AUDITORY HAIR CELLS, and their STEREOCILIA are approximately twice as thick as those of the outer hair cells. Auditory Hair Cell, Inner,Auditory Hair Cells, Inner,Cochlear Inner Hair Cell,Cochlear Inner Hair Cells,Hair Cell, Auditory, Inner,Inner Auditory Hair Cell,Inner Auditory Hair Cells,Inner Hair Cells,Cell, Inner Hair,Cells, Inner Hair,Hair Cell, Inner,Hair Cells, Inner,Inner Hair Cell
D000159 Vestibulocochlear Nerve The 8th cranial nerve. The vestibulocochlear nerve has a cochlear part (COCHLEAR NERVE) which is concerned with hearing and a vestibular part (VESTIBULAR NERVE) which mediates the sense of balance and head position. The fibers of the cochlear nerve originate from neurons of the SPIRAL GANGLION and project to the cochlear nuclei (COCHLEAR NUCLEUS). The fibers of the vestibular nerve arise from neurons of Scarpa's ganglion and project to the VESTIBULAR NUCLEI. Cranial Nerve VIII,Eighth Cranial Nerve,Cochleovestibular Nerve,Statoacoustic Nerve,Cochleovestibular Nerves,Cranial Nerve VIIIs,Cranial Nerve, Eighth,Cranial Nerves, Eighth,Eighth Cranial Nerves,Nerve VIIIs, Cranial,Nerve, Cochleovestibular,Nerve, Eighth Cranial,Nerve, Statoacoustic,Nerve, Vestibulocochlear,Nerves, Cochleovestibular,Nerves, Eighth Cranial,Nerves, Statoacoustic,Nerves, Vestibulocochlear,Statoacoustic Nerves,VIIIs, Cranial Nerve,Vestibulocochlear Nerves
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001489 Basilar Membrane A basement membrane in the cochlea that supports the hair cells of the ORGAN OF CORTI, consisting keratin-like fibrils. It stretches from the SPIRAL LAMINA to the basilar crest. The movement of fluid in the cochlea, induced by sound, causes displacement of the basilar membrane and subsequent stimulation of the attached hair cells which transform the mechanical signal into neural activity. Basilar Membranes,Membrane, Basilar,Membranes, Basilar

Related Publications

P M Sellick, and R Patuzzi, and B M Johnstone
January 1986, Hearing research,
P M Sellick, and R Patuzzi, and B M Johnstone
January 1989, Acta oto-laryngologica. Supplementum,
P M Sellick, and R Patuzzi, and B M Johnstone
April 1981, Brain research,
P M Sellick, and R Patuzzi, and B M Johnstone
January 1988, Annual review of cell biology,
P M Sellick, and R Patuzzi, and B M Johnstone
June 1977, Nature,
P M Sellick, and R Patuzzi, and B M Johnstone
April 1993, The Journal of the Acoustical Society of America,
P M Sellick, and R Patuzzi, and B M Johnstone
January 1976, Cold Spring Harbor symposia on quantitative biology,
P M Sellick, and R Patuzzi, and B M Johnstone
December 1975, Science (New York, N.Y.),
P M Sellick, and R Patuzzi, and B M Johnstone
January 1993, The Journal of the Acoustical Society of America,
P M Sellick, and R Patuzzi, and B M Johnstone
November 2015, eLife,
Copied contents to your clipboard!