Epithelial permeability and the transepithelial migration of human neutrophils. 1983

L C Milks, and M J Brontoli, and E B Cramer

Although polymorphonuclear leukocytes (PMN's) can migrate through every epithelium in the body regardless of its permeability, very little is known about the effect of epithelial permeability on PMN migration and the effect of emigrating PMN's on the permeability of the epithelium. In an in vitro model system of transepithelial migration, human PMN's were stimulated by 0.1 micrometer fMet-Leu-Phe to traverse confluent, polarized canine kidney epithelial monolayers of varying permeabilities. Epithelial permeability was determined by both conductance measurement and horseradish peroxidase (HRP) tracer studies. As epithelial permeability increased, the number of PMN invasion sites as well as the number of PMN's that traversed the monolayer increased. The effect of PMN migration on epithelial permeability was examined using the ultrastructural tracers HRP and lanthanum nitrate. PMN's traversing the monolayer made close cell-to-cell contacts with other invading PMNs and with adjacent epithelial cells. These close contacts appeared to prevent leakage of tracer across invasion sites. Following PMN emigration, epithelial junctional membranes reapproximated and were impermeable to the tracers. These results indicated that, in the absence of serum and connective tissue factors, (a) the number of PMN invasion sites and the number of PMN's that traversed an epithelium were a function of the conductance of the epithelium and (b) PMN's in the process of transepithelial migration maintained close cell-cell contacts and prevented the leakage of particles (greater than 5 nm in diameter) across the invasion site.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

L C Milks, and M J Brontoli, and E B Cramer
January 1998, Invasion & metastasis,
L C Milks, and M J Brontoli, and E B Cramer
January 2020, The Journal of clinical investigation,
L C Milks, and M J Brontoli, and E B Cramer
February 2000, The Journal of biological chemistry,
L C Milks, and M J Brontoli, and E B Cramer
July 1980, Proceedings of the National Academy of Sciences of the United States of America,
L C Milks, and M J Brontoli, and E B Cramer
January 2013, The Journal of clinical investigation,
L C Milks, and M J Brontoli, and E B Cramer
January 2008, Methods in enzymology,
L C Milks, and M J Brontoli, and E B Cramer
May 2009, American journal of respiratory cell and molecular biology,
L C Milks, and M J Brontoli, and E B Cramer
September 1996, The Journal of experimental medicine,
L C Milks, and M J Brontoli, and E B Cramer
August 1996, American journal of respiratory cell and molecular biology,
L C Milks, and M J Brontoli, and E B Cramer
January 1994, Trends in cell biology,
Copied contents to your clipboard!