Modulation of arginine-induced glucagon release by epinephrine and glucose levels in man. 1983

J C Beard, and C Weinberg, and M A Pfeifer, and J D Best, and J B Halter, and D Porte

To assess how physiological epinephrine (EPI) elevations and EPI-induced hyperglycemia interact in the regulation of glucagon secretion, we measured acute glucagon responses (AGR) to arginine at controlled glucose levels during EPI infusions in man. With glucose levels matched at 166 +/- 5 mg/dl using glucose clamp techniques, the AGR (mean change at 2-5 min) to a 5-g iv arginine injection was greater in each subject during the infusion of 15 ng/kg . min EPI (low EPI) than during the control glucose infusion and was still greater during the infusion of 80 ng/kg . min EPI (high EPI; 69 +/- 15, 76 +/- 13, and 142 +/- 22 pg/ml, respectively; n = 8; P less than 0.003). With glucose levels matched at 256 +/- 5 mg/dl, a similar dose-related enhancement of AGR by EPI was seen (control, 53 +/- 12 pg/ml; low EPI, 63 +/- 5 pg/ml; high EPI, 130 +/- 20 pg/ml; P less than 0.008). During control infusions, raising the glucose level from 102 +/- 2 to 166 +/- 5 to 256 +/- 5 mg/dl suppressed AGR from 77 +/- 17 to 69 +/- 15 to 53 +/- 12 pg/ml (P less than 0.002). During low EPI, the same glycemic increments lowered GR from 108 +/- 19 to 76 +/- 13 to 63 +/- 5 pg/ml (P less than 0.02). This suppression of AGR by hyperglycemia was sufficient to obscure stimulation by EPI: at a glucose level of 102 +/- 2 mg/dl during control infusions, AGR was 77 +/- 17 pg/ml, compared to only 76 +/- 13 pg/ml during low EPI with the glucose level higher (166 +/- 5 mg/dl). Multiple linear regression analysis showed a highly significant dependence of AGR on both EPI and glucose levels, accounting for 80% of the within-subject variation in AGR (P less than 0.0001). These data show that 1) EPI is a dose-dependent amplifier of arginine-induced glucagon secretion in man, and 2) hyperglycemia suppresses arginine-induced glucagon secretion, potentially masking the stimulation caused by EPI. The findings suggest that the feedback effect of hyperglycemia on glucagon secretion may help regulate the level of hyperglycemia resulting from adrenergic stimulation.

UI MeSH Term Description Entries
D007263 Infusions, Parenteral The administration of liquid medication, nutrient, or other fluid through some other route than the alimentary canal, usually over minutes or hours, either by gravity flow or often by infusion pumping. Intra-Abdominal Infusions,Intraperitoneal Infusions,Parenteral Infusions,Peritoneal Infusions,Infusion, Intra-Abdominal,Infusion, Intraperitoneal,Infusion, Parenteral,Infusion, Peritoneal,Infusions, Intra-Abdominal,Infusions, Intraperitoneal,Infusions, Peritoneal,Intra Abdominal Infusions,Intra-Abdominal Infusion,Intraperitoneal Infusion,Parenteral Infusion,Peritoneal Infusion
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

J C Beard, and C Weinberg, and M A Pfeifer, and J D Best, and J B Halter, and D Porte
June 1971, Metabolism: clinical and experimental,
J C Beard, and C Weinberg, and M A Pfeifer, and J D Best, and J B Halter, and D Porte
September 2022, American journal of physiology. Endocrinology and metabolism,
J C Beard, and C Weinberg, and M A Pfeifer, and J D Best, and J B Halter, and D Porte
September 1973, The Journal of clinical endocrinology and metabolism,
J C Beard, and C Weinberg, and M A Pfeifer, and J D Best, and J B Halter, and D Porte
August 1977, Metabolism: clinical and experimental,
J C Beard, and C Weinberg, and M A Pfeifer, and J D Best, and J B Halter, and D Porte
December 2002, Diabetes,
J C Beard, and C Weinberg, and M A Pfeifer, and J D Best, and J B Halter, and D Porte
March 1980, Acta physiologica Scandinavica,
J C Beard, and C Weinberg, and M A Pfeifer, and J D Best, and J B Halter, and D Porte
September 1972, Nature: New biology,
J C Beard, and C Weinberg, and M A Pfeifer, and J D Best, and J B Halter, and D Porte
September 2002, Metabolism: clinical and experimental,
J C Beard, and C Weinberg, and M A Pfeifer, and J D Best, and J B Halter, and D Porte
August 1967, Nature,
Copied contents to your clipboard!