Relations between high-affinity binding sites for L-tryptophan, diazepam, salicylate and Phenol Red on human serum albumin. 1983

U Kragh-Hansen

Binding of L-tryptophan, diazepam, salicylate and Phenol Red to defatted human serum albumin was studied by ultrafiltration at pH 7.0. All ligands bind to one high-affinity binding site with association constants of the order of 10(4)-10(5)M-1. The number of secondary binding sites was found to vary from zero to five, with association constants about 10(3)M-1. Competitive binding studies with different pairs of the ligands were performed. Binding of both ligands was determined simultaneously. L-Tryptophan and diazepam were found to compete for a common high-affinity binding site on albumin. The following combinations of ligands do not bind competitively to albumin: L-tryptophan-Phenol Red, L-tryptophan-salicylate and Phenol Red-salicylate. On the other hand, high-affinity bindings of the three ligands do not take place independently but in such a way that binding of one of the ligands results in a decrease in binding of the other ligands. The decreases in binding are reciprocal and can be accounted for by introducing a coupling constant. The magnitude of the constant is dependent on the ligands being bound. In the present study, the mutual decrease in binding was more pronounced with L-tryptophan-salicylate and Phenol Red-salicylate than with L-tryptophan-Phenol Red.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D010635 Phenolphthaleins A family of 3,3-bis(p-hydroxyphenyl)phthalides. They are used as CATHARTICS, indicators, and COLORING AGENTS.
D010637 Phenolsulfonphthalein Red dye, pH indicator, and diagnostic aid for determination of renal function. It is used also for studies of the gastrointestinal and other systems. Phenol Red,Sulfonphthal,Sulphental,Sulphonthal
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D003975 Diazepam A benzodiazepine with anticonvulsant, anxiolytic, sedative, muscle relaxant, and amnesic properties and a long duration of action. Its actions are mediated by enhancement of GAMMA-AMINOBUTYRIC ACID activity. 7-Chloro-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepin-2-one,Apaurin,Diazemuls,Faustan,Relanium,Seduxen,Sibazon,Stesolid,Valium
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012459 Salicylates The salts or esters of salicylic acids, or salicylate esters of an organic acid. Some of these have analgesic, antipyretic, and anti-inflammatory activities by inhibiting prostaglandin synthesis. Salicylate,Salicylic Acids,Acids, Salicylic
D012709 Serum Albumin A major protein in the BLOOD. It is important in maintaining the colloidal osmotic pressure and transporting large organic molecules. Plasma Albumin,Albumin, Serum

Related Publications

U Kragh-Hansen
February 1983, Igaku kenkyu. Acta medica,
U Kragh-Hansen
September 1961, Archives of biochemistry and biophysics,
U Kragh-Hansen
January 2004, Methods in molecular biology (Clifton, N.J.),
U Kragh-Hansen
April 2001, European journal of biochemistry,
U Kragh-Hansen
January 1975, Naunyn-Schmiedeberg's archives of pharmacology,
U Kragh-Hansen
July 1961, Archives of biochemistry and biophysics,
Copied contents to your clipboard!