Primary culture of purified Leydig cells isolated from adult rat testes. 1983

J Y Browning, and J J Heindel, and H E Grotjan

Methods for isolating highly purified Leydig cells permit the study of acute responses and biochemical properties of Leydig cells independent of other testicular cell types. The present study describes the development of a primary culture system for purified Leydig cells from adult rats in which the cells retain their ability to secrete testosterone for at least 72 h in culture. When Leydig cells were cultured in tissue culture medium 199--0.1% BSA (M199-BSA), basal testosterone secretion declined by 72 h, whereas hCGB-stimulated testosterone secretion was reduced by 48 h. Changing the culture medium twice daily or adding 0.5% fetal calf serum (fcs) enhanced basal and gonadotropin-stimulated testosterone secretion at 72 h in culture, although responsiveness to hCG was reduced to 57% of that in freshly isolated cells. Incubation of Leydig cells in the defined culture medium Dulbecco's Modified Eagles-Ham's F-12 (1:1, vol/vol) supplemented with 15 mM Hepes buffer, transferrin, insulin, and epidermal growth factor (DHG:F12 + Hepes + TIE) in either the presence or absence of 0.5% fcs yielded functional Leydig cells for longer intervals in culture. Furthermore, testosterone secretion was greater in DHG:F12 + Hepes + TIE than in M199-BSA at all time intervals tested. In DHG:F12 + Hepes + TIE, basal and gonadotropin-stimulated testosterone production by Leydig cells were maintained for 72 h in culture. Degenerative changes in morphology were apparent in some cells at 72 h, but not at earlier times in culture. This primary culture system for isolated Leydig cells provides a valuable tool to examine the temporally regulated events in Leydig cell function.

UI MeSH Term Description Entries
D007985 Leydig Cells Steroid-producing cells in the interstitial tissue of the TESTIS. They are under the regulation of PITUITARY HORMONES; LUTEINIZING HORMONE; or interstitial cell-stimulating hormone. TESTOSTERONE is the major androgen (ANDROGENS) produced. Interstitial Cells, Testicular,Leydig Cell,Testicular Interstitial Cell,Testicular Interstitial Cells,Cell, Leydig,Cell, Testicular Interstitial,Cells, Leydig,Cells, Testicular Interstitial,Interstitial Cell, Testicular
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013739 Testosterone A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL. 17-beta-Hydroxy-4-Androsten-3-one,17-beta-Hydroxy-8 alpha-4-Androsten-3-one,8-Isotestosterone,AndroGel,Androderm,Andropatch,Androtop,Histerone,Sterotate,Sustanon,Testim,Testoderm,Testolin,Testopel,Testosterone Sulfate,17 beta Hydroxy 4 Androsten 3 one,17 beta Hydroxy 8 alpha 4 Androsten 3 one,8 Isotestosterone
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

J Y Browning, and J J Heindel, and H E Grotjan
November 1982, Steroids,
J Y Browning, and J J Heindel, and H E Grotjan
August 1988, Cell and tissue research,
J Y Browning, and J J Heindel, and H E Grotjan
December 1983, Biology of reproduction,
J Y Browning, and J J Heindel, and H E Grotjan
September 1976, The Journal of endocrinology,
J Y Browning, and J J Heindel, and H E Grotjan
December 1977, Acta medica Okayama,
J Y Browning, and J J Heindel, and H E Grotjan
March 2016, Proceedings of the National Academy of Sciences of the United States of America,
J Y Browning, and J J Heindel, and H E Grotjan
January 1986, Journal of reproduction and fertility,
J Y Browning, and J J Heindel, and H E Grotjan
June 1988, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
J Y Browning, and J J Heindel, and H E Grotjan
January 1989, Reproduction, nutrition, development,
J Y Browning, and J J Heindel, and H E Grotjan
July 1992, Acta endocrinologica,
Copied contents to your clipboard!