Biochemical and mechanical properties of resistance arteries from normotensive and hypertensive rats. 1983

J E Brayden, and W Halpern, and L R Brann

Microchemical techniques were employed to measure the DNA, contractile proteins, and connective tissue protein composition of 150 micrograms samples of mesenteric and cerebral resistance arteries taken from 25-week-old spontaneously hypertensive (SHR) and control Wistar-Kyoto (WKY) rats. The active and passive mechanical properties of intact resistance arteries also were determined. The DNA content of branches of the posterior cerebral and mesenteric arteries (170 micrometers I.D.) were elevated by nearly 30% in the SHR compared to the WKY. The amounts of actin and myosin when normalized to DNA content were unchanged in SHR mesenteric arteries compared to control, whereas these amounts were decreased by 25% and 49%, respectively, in the SHR cerebral arteries vs control. The functional implications of these contractile protein measurements agreed with determinations of active smooth muscle cell stress-generating capabilities, which were found unchanged in the mesenteric arteries and depressed in the SHR cerebral arteries. Neither the absolute amounts and concentrations (relative to tissue mass) of elastin in mesenteric and cerebral arteries, nor the absolute amounts and concentrations of collagen in the mesenteric artery, were changed in the SHR. However, cerebral artery total collagen was elevated by 31% in the SHR, with no change in collagen concentration between the two strains. Under conditions where the smooth muscle cells were fully relaxed, the internal radii of SHR brain and SHR mesenteric arteries were smaller at all pressures with respect to the WKY. However, only the SHR cerebral arteries were actually less distensible than controls. Thus, it is apparent that hypertension-associated changes in the chemical and mechanical properties of the resistance artery wall vary considerably depending upon which vascular bed is examined. The measurements made in this study suggest that these changes are more pronounced in brain arteries. This finding could be of significance regarding the autoregulatory capability of, and blood pressure distribution within, brain vessels of hypertensive animals.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D008297 Male Males
D008638 Mesenteric Arteries Arteries which arise from the abdominal aorta and distribute to most of the intestines. Arteries, Mesenteric,Artery, Mesenteric,Mesenteric Artery
D009129 Muscle Tonus The state of activity or tension of a muscle beyond that related to its physical properties, that is, its active resistance to stretch. In skeletal muscle, tonus is dependent upon efferent innervation. (Stedman, 25th ed) Muscle Tension,Muscle Tightness,Muscular Tension,Tension, Muscle,Tension, Muscular,Tightness, Muscle,Tonus, Muscle
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002536 Cerebral Arteries The arterial blood vessels supplying the CEREBRUM. Arteries, Cerebral,Artery, Cerebral,Cerebral Artery
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D003285 Contractile Proteins Proteins which participate in contractile processes. They include MUSCLE PROTEINS as well as those found in other cells and tissues. In the latter, these proteins participate in localized contractile events in the cytoplasm, in motile activity, and in cell aggregation phenomena. Contractile Protein,Protein, Contractile,Proteins, Contractile

Related Publications

J E Brayden, and W Halpern, and L R Brann
July 1995, Hypertension (Dallas, Tex. : 1979),
J E Brayden, and W Halpern, and L R Brann
June 1995, Journal of pharmacological and toxicological methods,
J E Brayden, and W Halpern, and L R Brann
August 1998, Hypertension (Dallas, Tex. : 1979),
J E Brayden, and W Halpern, and L R Brann
July 2009, Hypertension research : official journal of the Japanese Society of Hypertension,
J E Brayden, and W Halpern, and L R Brann
January 1995, Hypertension (Dallas, Tex. : 1979),
J E Brayden, and W Halpern, and L R Brann
August 1998, The Annals of thoracic surgery,
J E Brayden, and W Halpern, and L R Brann
December 2008, Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia,
J E Brayden, and W Halpern, and L R Brann
January 1994, Journal of hypertension,
Copied contents to your clipboard!