Effect of carbonic anhydrase inhibition on superficial and deep nephron bicarbonate reabsorption in the rat. 1983

T D DuBose, and M S Lucci

The nephron segment responsible for the acetazolamide-insensitive fraction of renal bicarbonate reabsorption has not been clearly delineated. This study compares superficial and deep nephron bicarbonate reabsorption before and after acetazolamide at two dose levels (20 and 50 mg/kg per h) in mutant Munich-Wistar rats employing both cortical and papillary micropuncture and microcalorimetry. Systemic acid-base balance and right whole kidney glomerular filtration rate were similar in all groups examined. The effects of the two doses of acetazolamide were indistinguishable and resulted in a significant increase in whole kidney bicarbonate excretion that compared favorably with the fraction delivered out of the left papillary tip. Acetazolamide inhibited superficial proximal bicarbonate reabsorption by 80.0%, whereas reabsorption up to the deep loop of Henle was decreased by only 52% (P less than 0.001). Bicarbonate reabsorption that was insensitive to acetazolamide occurred in the superficial and deep loop of Henle and between the distal tubule and base collecting duct. Because water reabsorption in these segments could serve to generate transepithelial bicarbonate concentration gradients favorable for reabsorption, we attempted to minimize water abstraction by combined administration of mannitol and acetazolamide. During this condition a significant increase in bicarbonate delivery up to the deep loop of Henle was noted (52 vs. 65%), whereas superficial nephron reabsorption was not altered. Furthermore, an outwardly directed bicarbonate concentration gradient from the deep loop of Henle to vasa recta was demonstrated during acetazolamide (delta tCO2 = 20.9 +/- 3.3 mM), but was abolished during combined mannitol and acetazolamide administration (delta tCO2 = 3.5 +/- 0.9 mM). It is concluded that carbonic anhydrase inhibition results in a disparate effect on nephron bicarbonate reabsorption when juxtamedullary and superficial nephron segments are compared. Our findings suggest that a mechanism for residual bicarbonate reabsorption during acetazolamide administration may be passive reabsorption driven by favorable transepithelial concentration gradients.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D002257 Carbonic Anhydrase Inhibitors A class of compounds that reduces the secretion of H+ ions by the proximal kidney tubule through inhibition of CARBONIC ANHYDRASES. Carbonate Dehydratase Inhibitor,Carbonate Dehydratase Inhibitors,Carbonic Anhydrase Inhibitor,Carboxyanhydrase Inhibitor,Carboxyanhydrase Inhibitors,Anhydrase Inhibitor, Carbonic,Dehydratase Inhibitor, Carbonate,Inhibitor, Carbonate Dehydratase,Inhibitor, Carbonic Anhydrase,Inhibitor, Carboxyanhydrase,Inhibitors, Carbonate Dehydratase,Inhibitors, Carbonic Anhydrase,Inhibitors, Carboxyanhydrase
D000086 Acetazolamide One of the CARBONIC ANHYDRASE INHIBITORS that is sometimes effective against absence seizures. It is sometimes useful also as an adjunct in the treatment of tonic-clonic, myoclonic, and atonic seizures, particularly in women whose seizures occur or are exacerbated at specific times in the menstrual cycle. However, its usefulness is transient often because of rapid development of tolerance. Its antiepileptic effect may be due to its inhibitory effect on brain carbonic anhydrase, which leads to an increased transneuronal chloride gradient, increased chloride current, and increased inhibition. (From Smith and Reynard, Textbook of Pharmacology, 1991, p337) Acetadiazol,Acetazolam,Acetazolamide Sodium, (Sterile),Acetazolamide, Monosodium Salt,Ak-Zol,Apo-Acetazolamide,Diacarb,Diamox,Diuramide,Défiltran,Edemox,Glauconox,Glaupax,Huma-Zolamide,Ak Zol,AkZol,Apo Acetazolamide,ApoAcetazolamide,Huma Zolamide,HumaZolamide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001639 Bicarbonates Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity. Bicarbonate,Bicarbonate Ions,Hydrogen Carbonates,Bicarbonate Ion,Carbonic Acid Ions,Hydrogen Carbonate,Carbonate, Hydrogen,Carbonates, Hydrogen,Ion, Bicarbonate,Ions, Bicarbonate,Ions, Carbonic Acid
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

T D DuBose, and M S Lucci
April 1976, Pflugers Archiv : European journal of physiology,
T D DuBose, and M S Lucci
October 1963, The American journal of physiology,
T D DuBose, and M S Lucci
November 1982, Pflugers Archiv : European journal of physiology,
T D DuBose, and M S Lucci
January 1984, Annals of the New York Academy of Sciences,
T D DuBose, and M S Lucci
January 1979, The American journal of physiology,
T D DuBose, and M S Lucci
July 1975, The Journal of pharmacology and experimental therapeutics,
T D DuBose, and M S Lucci
April 1984, The Journal of clinical investigation,
T D DuBose, and M S Lucci
May 1958, The Journal of clinical investigation,
T D DuBose, and M S Lucci
March 1982, The American journal of physiology,
T D DuBose, and M S Lucci
December 1986, The Journal of clinical investigation,
Copied contents to your clipboard!