Afferent and efferent pathways of the vibrissal region of primary motor cortex in the mouse. 1983

L L Porter, and E L White

The afferent and efferent connections of the vibrissal representation within the mouse primary motor cortex (MsI) were identified by using the retrograde transport of horseradish peroxidase (HRP) and the anterograde transport of tritiated amino acids injected into MsI. Following aldehyde perfusion brains were frozen-sectioned at 40 microns and reacted for HRP using the 3-3' diaminobenzidine-cobalt chloride technique of Adams ('77). Alternate HRP reacted sections were processed for autoradiography. HRP-filled pyramidal cell somata and concentrations of developed silver grains above background levels were observed in both the vibrissal area of primary somatosensory cortex (SmI) cortex (i.e., the posteromedial barrel subfield; PMBSF cortex) and in the face region of SmII (area 40). In both regions labeled somata occurred predominantly in cortical layers II-III and V. Autoradiographic label was superimposed over the regions containing labeled somata but exhibited a less distinct laminar organization. A dense reciprocal projection connected the injection site with the homotopic area in contralateral MsI; somata occurred for the most part in layers III and V. Developed silver grains were uniformly dispersed over the area containing labeled cell bodies. HRP-labeled pyramidal somata were noted in contralateral PMBSF cortex, but no silver grains occurred in this region. Reciprocal projections linked MsI cortex with the ipsilateral thalamic nuclei: ventralis pars lateralis (VL) and centralis pars lateralis (CL) and with the zona incerta (ZI). Labeled cell bodies and developed silver grains were more dense in VL than in CL. The ipsilateral striatum and thalamic reticular nucleus (NRT) received afferents from the motor cortex but did not project to it. Thus, the vibrissal area of primary motor cortex is connected with a number of cortical and subcortical structures, each of which has been shown to play a role in motor performance. Identification of the afferent and efferent pathways of MsI cortex will now enable further investigation of the ultrastructural and synaptic organization of the vibrissal area of MsI.

UI MeSH Term Description Entries
D008297 Male Males
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D005145 Face The anterior portion of the head that includes the skin, muscles, and structures of the forehead, eyes, nose, mouth, cheeks, and jaw. Faces
D006197 Hair A filament-like structure consisting of a shaft which projects to the surface of the SKIN from a root which is softer than the shaft and lodges in the cavity of a HAIR FOLLICLE. It is found on most surfaces of the body. Fetal Hair,Hair, Fetal,Lanugo,Fetal Hairs,Hairs,Hairs, Fetal
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012679 Sense Organs Specialized organs adapted for the reception of stimuli by the NERVOUS SYSTEM. Sensory System,Organ, Sense,Sense Organ,Sensory Systems,System, Sensory

Related Publications

L L Porter, and E L White
January 1991, Cerebral cortex (New York, N.Y. : 1991),
L L Porter, and E L White
May 1971, Doklady Akademii nauk SSSR,
L L Porter, and E L White
July 1975, Journal of neurophysiology,
L L Porter, and E L White
May 1988, Nihon Hinyokika Gakkai zasshi. The japanese journal of urology,
L L Porter, and E L White
May 1988, Nihon Hinyokika Gakkai zasshi. The japanese journal of urology,
L L Porter, and E L White
January 1994, Experimental brain research,
Copied contents to your clipboard!