The visual cells of the skate retina: structure, histochemistry, and disc-shedding properties. 1983

R B Szamier, and H Ripps

Earlier studies have shown that visual function in skate is subserved solely by the rod mechanism and that the retina of this elasmobranch contains only rod photoreceptors. Nevertheless, the skate retina is capable of responding to levels of illumination that extend well into the photopic range, and we have detected in histological sections (usually from younger animals) small, proximally displaced, conelike photoreceptors which possibly represent another class of visual cell. However, ultrastructural and histochemical studies showed that the membranous discs of the outer segments of these cells were isolated from the plasma membrane, and that their synaptic terminals appeared immature and unlike those usually associated with cone receptors. In addition, the pattern of incorporation of 3H-fucose, as revealed by radioautography, was similar for both the rods and the smaller visual cells; i.e., the label was concentrated along the basal discs of the outer segment. When we examined the disc-shedding behavior of the visual cells in skates entrained for 2 weeks or longer to a 12-hour light:12-hour dark cycle, enhanced phagocytic activity was seen only following light onset; there was no significant increase following light offset. On the available evidence, it seems reasonable to conclude that the small visual cells are rods that have recently differentiated, and are growing and being incorporated into the photoreceptor layer of the retina.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009898 Optic Disk The portion of the optic nerve seen in the fundus with the ophthalmoscope. It is formed by the meeting of all the retinal ganglion cell axons as they enter the optic nerve. Blind Spot,Optic Disc,Optic Nerve Head,Optic Papilla,Blind Spots,Disc, Optic,Disk, Optic,Head, Optic Nerve,Nerve Head, Optic,Optic Discs,Optic Disks,Optic Nerve Heads,Optic Papillas,Papilla, Optic,Papillas, Optic,Spot, Blind
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D012374 Rod Cell Outer Segment The portion of a retinal rod cell situated between the ROD INNER SEGMENT and the RETINAL PIGMENT EPITHELIUM. It contains a stack of photosensitive disk membranes laden with RHODOPSIN. Rod Outer Segment,Rod Outer Segments,Outer Segment, Rod,Outer Segments, Rod
D013570 Synaptic Membranes Cell membranes associated with synapses. Both presynaptic and postsynaptic membranes are included along with their integral or tightly associated specializations for the release or reception of transmitters. Membrane, Synaptic,Membranes, Synaptic,Synaptic Membrane

Related Publications

R B Szamier, and H Ripps
October 1970, The Journal of general physiology,
R B Szamier, and H Ripps
August 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R B Szamier, and H Ripps
September 1992, The Journal of general physiology,
R B Szamier, and H Ripps
April 1978, The Journal of general physiology,
R B Szamier, and H Ripps
January 1977, The Journal of general physiology,
R B Szamier, and H Ripps
January 1983, Transactions of the ophthalmological societies of the United Kingdom,
R B Szamier, and H Ripps
September 1979, Investigative ophthalmology & visual science,
R B Szamier, and H Ripps
February 1984, Investigative ophthalmology & visual science,
R B Szamier, and H Ripps
January 1990, The Journal of experimental zoology. Supplement : published under auspices of the American Society of Zoologists and the Division of Comparative Physiology and Biochemistry,
R B Szamier, and H Ripps
April 1998, Experimental eye research,
Copied contents to your clipboard!