beta-sitosterol: esterification by intestinal acylcoenzyme A: cholesterol acyltransferase (ACAT) and its effect on cholesterol esterification. 1983

F J Field, and S N Mathur

Rabbits were fed either 10% coconut oil, 10% coconut oil and 1% beta-sitosterol, 10% coconut oil and 1% cholesterol, or 10% coconut oil and 1% beta-sitosterol plus 1% cholesterol for 4 weeks. Microsomal membranes from intestines of animals fed the 1% beta-sitosterol diet had 48% less cholesterol and were enriched twofold in beta-sitosterol compared to membranes from animals fed the coconut oil diet alone. Acylcoenzyme A:cholesterol acyltransferase (ACAT) activity in jejunum and ileum was decreased significantly in animals fed the plant sterol alone. In membranes from animals fed 1% beta-sitosterol and 1% cholesterol, beta-sitosterol content increased 50% whereas cholesterol was modestly decreased compared to their controls fed only cholesterol. Intestinal ACAT was unchanged in the animals fed both sterols when compared to their controls. beta-Sitosterol esterification was determined by incubating intestinal microsomal membranes with either [(14)C]beta-sitosterol-albumin emulsion or [(14)C]beta-sitosterol:dipalmitoyl phosphatidylcholine (DPPC) liposomes to radiolabel the endogenous sterol pool. Oleoyl-CoA was then added. The CoA-dependent esterification rate of beta-sitosterol was very slow compared to that of cholesterol using both techniques. An increased amount of endogenous microsomal beta-sitosterol, which occurs in animals fed 1% beta-sitosterol, did not interfere with the stimulation of ACAT activity secondary to cholesterol enrichment of the membranes. Enriching microsomal membranes three- to five-fold with beta-sitosterol did not affect ACAT activity. Freshly isolated intestinal cells were incubated for 1 hour with [(3)H]oleic acid and beta-sitosterol:DPPC or 25-hydroxycholesterol:DPPC. Incorporation of oleic acid into cholesteryl esters did not change in the presence of beta-sitosterol but increased fourfold after the addition of 25-hydroxycholesterol. We conclude that the CoA-dependent esterification rate of cholesterol is at least 60 times greater than that of beta-sitosterol. Membrane beta-sitosterol does not interfere with nor compete with cholesterol esterification. Inadequate esterification of this plant sterol may play a role in the poor absorption of beta-sitosterol by the gut.-Field, F. J., and S. N. Mathur. beta-Sitosterol: esterification by intestinal acylcoenzyme A:cholesterol acyltransferase (ACAT) and its effect on cholesterol esterification.

UI MeSH Term Description Entries
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D008297 Male Males
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002785 Sterol O-Acyltransferase An enzyme that catalyzes the formation of cholesterol esters by the direct transfer of the fatty acid group from a fatty acyl CoA derivative. This enzyme has been found in the adrenal gland, gonads, liver, intestinal mucosa, and aorta of many mammalian species. EC 2.3.1.26. Acyl-CoA-Cholesterol Acyltransferase,Cholesterol Acyltransferase,Cholesterol Esterifying Enzyme,Acyl CoA Cholesterol Acyltransferase,Acyltransferase, Acyl-CoA-Cholesterol,Acyltransferase, Cholesterol,Enzyme, Cholesterol Esterifying,Esterifying Enzyme, Cholesterol,O-Acyltransferase, Sterol,Sterol O Acyltransferase
D002788 Cholesterol Esters Fatty acid esters of cholesterol which constitute about two-thirds of the cholesterol in the plasma. The accumulation of cholesterol esters in the arterial intima is a characteristic feature of atherosclerosis. Cholesterol Ester,Cholesteryl Ester,Cholesteryl Esters,Ester, Cholesterol,Ester, Cholesteryl,Esters, Cholesterol,Esters, Cholesteryl
D004041 Dietary Fats Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados. Fats, Dietary,Dietary Fat,Fat, Dietary
D000214 Acyl Coenzyme A S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation. Acyl CoA,Fatty Acyl CoA,Long-Chain Acyl CoA,Acyl CoA, Fatty,Acyl CoA, Long-Chain,CoA, Acyl,CoA, Fatty Acyl,CoA, Long-Chain Acyl,Coenzyme A, Acyl,Long Chain Acyl CoA
D000217 Acyltransferases Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3. Acyltransferase

Related Publications

F J Field, and S N Mathur
December 2004, Nihon rinsho. Japanese journal of clinical medicine,
F J Field, and S N Mathur
February 2001, Nihon rinsho. Japanese journal of clinical medicine,
F J Field, and S N Mathur
January 1979, Progress in lipid research,
F J Field, and S N Mathur
October 1958, Bollettino della Societa italiana di biologia sperimentale,
F J Field, and S N Mathur
April 1981, Scandinavian journal of gastroenterology,
F J Field, and S N Mathur
September 1988, Biochimica et biophysica acta,
Copied contents to your clipboard!