Electron-microscopic study of the maturing rat red nucleus. I. The large-neuron population. 1978

J T Povlishock, and J J Taylor, and H R Seibel

The maturing large neurons of the rat red nucleus in animals ranging in age from 1 to 21 days of postnatal life were studied ultrastructurally. Days 1--6 were characterized by rapid morphologic maturation occurring concomitantly with the onset of synaptogenesis. Morphogenesis was confined to the soma, while the first synaptic contacts were also formed in relationship to the soma. Days 6--9 demonstrated continued somal morphogenesis exemplified by cytoplasmic expansion and by the conspicuous presence of perisomatic and growth cone processes. Proximal dendritic morphogenesis was initiated, and synaptogenesis became complex with synaptic sites occurring in relation to the neuronal soma, the perisomatic processes and proximal dendrites. Days 9--15 were characterized by the completion of somal and proximal dendritic morphogenesis and by a massive degree of synaptogenic activity. During this interval, the soma lost perisomatic and growth cone processes, while somatic spines appeared. By the end of this period the neuronal soma and the proximal dendrites appeared mature in terms of both morphology and synaptic input. Complete neuronal maturation was ultimately attained by day 21 of postnatal life.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D012012 Red Nucleus A pinkish-yellow portion of the midbrain situated in the rostral mesencephalic tegmentum. It receives a large projection from the contralateral half of the CEREBELLUM via the superior cerebellar peduncle and a projection from the ipsilateral MOTOR CORTEX. Nucleus Ruber,Nucleus, Red
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

J T Povlishock, and J J Taylor, and H R Seibel
September 2005, Brain research bulletin,
J T Povlishock, and J J Taylor, and H R Seibel
November 1983, The Journal of comparative neurology,
J T Povlishock, and J J Taylor, and H R Seibel
June 1989, The Journal of comparative neurology,
J T Povlishock, and J J Taylor, and H R Seibel
October 1971, The Journal of comparative neurology,
J T Povlishock, and J J Taylor, and H R Seibel
August 1977, The Journal of comparative neurology,
J T Povlishock, and J J Taylor, and H R Seibel
May 1971, The Journal of comparative neurology,
J T Povlishock, and J J Taylor, and H R Seibel
August 1988, Journal of anatomy,
J T Povlishock, and J J Taylor, and H R Seibel
January 1984, The Journal of comparative neurology,
Copied contents to your clipboard!