Irreversible binding of acrylonitrile to nucleic acids. 1983

H Peter, and K E Appel, and R Berg, and H M Bolt

1. [2,3-14C]Acrylonitrile was incubated with rat-liver microsomes, NADPH and either DNA, RNA or bovine serum albumin. Irreversible binding occurred to the macromolecular targets. Binding was lower when incubations were performed without microsomes. 2. Most of the 14C bound to DNA, RNA or polynucleotides (poly-A, poly-C, poly-G, poly-U) after incubation of [2,3-14C]acrylonitrile with rat-liver microsomes and 'conventional' re-isolation of the nucleic acids was removed from the macromolecular target when subsequently chromatographed on hydroxyapatite. 3. Radioactivity attached to DNA after prolonged non-enzymic incubations with [2,3-14C]acrylonitrile was also removed from the DNA by chromatography on hydroxyapatite. 4. When [2,3-14C]acrylonitrile was administered to rats (i.p.), incorporation of 14C into the natural bases of hepatic RNA was observed. In contrast with previous experiments with [1,2-14C]vinyl chloride, no radioactive [1-N6]etheno-adenine could be detected in RNA. 5. After administration of [2,3-14C]acrylonitrile to rats, hepatic DNA was isolated and hydrolysed by a modified enzymic procedure. Chromatography on PEI-cellulose showed two 14C peaks which did not co-chromatograph with any known standard. The amount of 14C in these presumed alkylation products was too low to allow chemical identification. 6. It is concluded that acrylonitrile, either itself or its metabolites, can alkylate nucleic acids. However, the extent of irreversible nucleic-acid binding is quantitatively much less than that observed with vinyl halides.

UI MeSH Term Description Entries
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009570 Nitriles Organic compounds containing the -CN radical. The concept is distinguished from CYANIDES, which denotes inorganic salts of HYDROGEN CYANIDE. Nitrile
D009696 Nucleic Acids High molecular weight polymers containing a mixture of purine and pyrimidine nucleotides chained together by ribose or deoxyribose linkages. Nucleic Acid,Acid, Nucleic,Acids, Nucleic
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D000181 Acrylonitrile A highly poisonous compound used widely in the manufacture of plastics, adhesives and synthetic rubber. Vinyl Cyanide,Cyanide, Vinyl
D000478 Alkylation The covalent bonding of an alkyl group to an organic compound. It can occur by a simple addition reaction or by substitution of another functional group. Alkylations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

H Peter, and K E Appel, and R Berg, and H M Bolt
January 1981, Xenobiotica; the fate of foreign compounds in biological systems,
H Peter, and K E Appel, and R Berg, and H M Bolt
August 1981, Chemico-biological interactions,
H Peter, and K E Appel, and R Berg, and H M Bolt
September 1983, Biochemical pharmacology,
H Peter, and K E Appel, and R Berg, and H M Bolt
March 2004, Structure (London, England : 1993),
H Peter, and K E Appel, and R Berg, and H M Bolt
February 1980, Biochemical pharmacology,
H Peter, and K E Appel, and R Berg, and H M Bolt
January 1965, The Journal of chemical physics,
H Peter, and K E Appel, and R Berg, and H M Bolt
February 2006, Journal of biomolecular structure & dynamics,
H Peter, and K E Appel, and R Berg, and H M Bolt
August 1991, Tumori,
H Peter, and K E Appel, and R Berg, and H M Bolt
January 2003, Biofizika,
Copied contents to your clipboard!