Muscarinic agonist binding and phospholipid turnover in brain. 1983

S K Fisher, and P D Klinger, and B W Agranoff

The ability of muscarinic cholinergic agonists to interact with muscarinic receptors in nerve ending preparations and elicit an increased labeling of phosphatidate and phosphatidylinositol from 32Pi has been investigated. Two groups of brain muscarinic agonists are distinguished. Addition of acetylcholine, carbamylcholine, methacholine, or muscarine resulted in a 2-fold stimulation of phosphatidate and phosphatidylinositol labeling, while bethanechol, pilocarpine, arecoline, and oxotremorine were less effective. Simultaneous addition of two agonists from the more effective group did not result in any further increase in stimulated labeling, while the addition of agonists from the less effective group antagonized the stimulatory effect of carbamylcholine. All of the agonists could completely displace binding of [3H]quinuclidinyl benzilate, a muscarinic antagonist. The displacement of the labeled antagonist by the more effective agonists was more complex than that predicted from a simple mass action isotherm and was compatible with the interaction of the agonists with high and low affinity forms of the receptor. Conversely, the displacement data from less effective agonists did not deviate markedly from those predicted for interaction of the agonists with a single affinity form of the receptor. Dose-response curves for stimulated phosphatidate labeling obtained in the presence of acetylcholine, carbamylcholine, and methacholine were predominantly correlated with occupation of the low affinity form of the muscarinic receptor. These results suggest that the enhancement of phosphatidate and phosphatidylinositol turnover in brain is caused by agonist-mediated conformational changes in the muscarinic receptor and that the ability of an agonist to induce this conversion may be predicted by its differential binding to the high and low affinity forms of the receptor.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010277 Parasympathomimetics Drugs that mimic the effects of parasympathetic nervous system activity. Included here are drugs that directly stimulate muscarinic receptors and drugs that potentiate cholinergic activity, usually by slowing the breakdown of acetylcholine (CHOLINESTERASE INHIBITORS). Drugs that stimulate both sympathetic and parasympathetic postganglionic neurons (GANGLIONIC STIMULANTS) are not included here. Parasympathomimetic Agents,Parasympathomimetic Drugs,Parasympathomimetic Effect,Parasympathomimetic Effects,Agents, Parasympathomimetic,Drugs, Parasympathomimetic,Effect, Parasympathomimetic,Effects, Parasympathomimetic
D010712 Phosphatidic Acids Fatty acid derivatives of glycerophosphates. They are composed of glycerol bound in ester linkage with 1 mole of phosphoric acid at the terminal 3-hydroxyl group and with 2 moles of fatty acids at the other two hydroxyl groups. Ammonium Phosphatidate,Diacylglycerophosphates,Phosphatidic Acid,Acid, Phosphatidic,Acids, Phosphatidic,Phosphatidate, Ammonium
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011813 Quinuclidinyl Benzilate A high-affinity muscarinic antagonist commonly used as a tool in animal and tissue studies. Benzilate, Quinuclidinyl
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical

Related Publications

S K Fisher, and P D Klinger, and B W Agranoff
February 1997, Comparative biochemistry and physiology. Part C, Pharmacology, toxicology & endocrinology,
S K Fisher, and P D Klinger, and B W Agranoff
April 1987, Brain research,
S K Fisher, and P D Klinger, and B W Agranoff
July 1979, British journal of pharmacology,
S K Fisher, and P D Klinger, and B W Agranoff
January 1987, Neurobiology of aging,
S K Fisher, and P D Klinger, and B W Agranoff
March 1980, Life sciences,
S K Fisher, and P D Klinger, and B W Agranoff
October 1984, Federation proceedings,
S K Fisher, and P D Klinger, and B W Agranoff
May 1983, FEBS letters,
S K Fisher, and P D Klinger, and B W Agranoff
December 1987, Biochemical pharmacology,
S K Fisher, and P D Klinger, and B W Agranoff
January 1982, Neurobiology of aging,
S K Fisher, and P D Klinger, and B W Agranoff
January 1980, FEBS letters,
Copied contents to your clipboard!