Transport of L-cysteine by rat renal brush border membrane vesicles. 1983

B Stieger, and G Stange, and J Biber, and H Murer

Brush border membranes were isolated from rat renal cortex by a divalent cation precipitation method. L-35S-cysteine uptake into the vesicles was measured by a rapid filtration method. Only minimal binding of the amino acid to the vesicles was observed. Sodium stimulates L-cysteine uptake specifically. Anion replacement experiments, experiments in the presence of potassium/valinomycin-induced diffusion potential as well as experiments with a potential-sensitive fluorescent dye document an electrogenic sodium-dependent uptake mechanism for L-cysteine. Tracer replacement experiments as well as the fluorescence experiments indicate a preferential transport of L-cysteine. Transport of L-cysteine is inhibited by L-alanine and L-phenylalanine but not by L-glutamic acid and the L-basic amino acids. Initial, linear influx kinetics provide evidence for the existence of two transport sites. The results suggest (a) sodium-dependent mechanism(s) for L-cysteine shared by other neutral amino acids.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D003553 Cystine A covalently linked dimeric nonessential amino acid formed by the oxidation of CYSTEINE. Two molecules of cysteine are joined together by a disulfide bridge to form cystine. Copper Cystinate,L-Cystine,L Cystine
D000409 Alanine A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM. Abufène,Alanine, L-Isomer,L-Alanine,Alanine, L Isomer,L Alanine,L-Isomer Alanine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B Stieger, and G Stange, and J Biber, and H Murer
July 1986, Biochimica et biophysica acta,
B Stieger, and G Stange, and J Biber, and H Murer
April 1998, The Journal of pharmacology and experimental therapeutics,
B Stieger, and G Stange, and J Biber, and H Murer
April 1983, Pflugers Archiv : European journal of physiology,
B Stieger, and G Stange, and J Biber, and H Murer
January 1979, The Biochemical journal,
B Stieger, and G Stange, and J Biber, and H Murer
July 1995, The Biochemical journal,
B Stieger, and G Stange, and J Biber, and H Murer
May 2000, Kidney international,
B Stieger, and G Stange, and J Biber, and H Murer
May 1993, Biochemical pharmacology,
B Stieger, and G Stange, and J Biber, and H Murer
April 1989, The American journal of physiology,
B Stieger, and G Stange, and J Biber, and H Murer
December 1997, Biochimica et biophysica acta,
B Stieger, and G Stange, and J Biber, and H Murer
May 1991, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!