An ascending serotonergic pain modulation pathway from the dorsal raphe nucleus to the parafascicularis nucleus of the thalamus. 1983

E Andersen, and N Dafny

Three types of spontaneously active neurons were found in the parafascicularis (PF) nucleus of the thalamus of the rat: slow firing units (0.5-10 spikes/s), bursting units (2-5 spikes/burst in 10-20 ms, one burst every 1-2 s) and fast firing units (15-40 spikes/s). A similar population of neurons was found in the PF of rats treated with 5,7-dihydroxytryptamine (5,7-DHT), a serotonin neurotoxin. Noxious tail pinch (TP) caused 68% of the PF neurons to increase their firing rates to 242% of their initial baseline activity, while non-noxious touch stimulation failed to induce a response. In the 5,7-DHT-treated rats, TP caused 85% of the neurons in the PF to increase their firing rates to 581% of their initial baseline activity and 22% of the neurons increased their firing in response to touching the tail. Both the number of cells responding (P less than 0.05) and the percentage increase (P less than 0.001) were statistically greater in serotonin-depleted rats than in controls. This indicates that serotonin (5-HT) has a tonic inhibitory influence on responses to both noxious and non-noxious sensory stimuli. In control rats, electrical stimulation of the dorsal raphe nucleus (DR) decreased the firing rates of PF neurons. In contrast, the same DR stimulation induced an increase in PF firing rates during stimulation in serotonin-depleted rats and this increase in firing rates remained several seconds after cessation of stimulation. This indicates that the DR may use at least two different neurotransmitters in its projections to forebrain structures. In control rats, the TP stimulation induced an increase in firing rates of rates of PF neurons while DR stimulation attenuated the excitation induced by TP stimulation. In serotonin-depleted rats, DR stimulation and TP both caused an increase in firing rates. This effect was not additive indicating that there may be a serotonergic projection from the DR to the PF which modifies responses to somatosensory stimuli. The inhibitory effects elicited by electrical stimulation were limited to the immediate area of the DR. Stimulation of the adjacent reticular formation 1 mm lateral to the DR produced the opposite effect, an increase in firing rate often accompanied by driven spike activity in the PF.

UI MeSH Term Description Entries
D008297 Male Males
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D011903 Raphe Nuclei Collections of small neurons centrally scattered among many fibers from the level of the TROCHLEAR NUCLEUS in the midbrain to the hypoglossal area in the MEDULLA OBLONGATA. Caudal Linear Nucleus of the Raphe,Interfascicular Nucleus,Nucleus Incertus,Rostral Linear Nucleus of Raphe,Rostral Linear Nucleus of the Raphe,Superior Central Nucleus,Central Nucleus, Superior,Incertus, Nucleus,Nuclei, Raphe,Nucleus, Interfascicular,Nucleus, Raphe,Nucleus, Superior Central,Raphe Nucleus
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical

Related Publications

E Andersen, and N Dafny
January 1994, Brain research bulletin,
E Andersen, and N Dafny
January 2013, Reviews in the neurosciences,
E Andersen, and N Dafny
April 2019, Reviews in the neurosciences,
E Andersen, and N Dafny
January 2024, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E Andersen, and N Dafny
August 2011, Journal of neurophysiology,
E Andersen, and N Dafny
December 1981, Brain research,
E Andersen, and N Dafny
March 1990, Brain research,
Copied contents to your clipboard!