Structure of mutagen nucleic acid complexes in solution. Proton chemical shifts in 9-aminoacridine complexes with dG-dC, dC-dG, and dA-dT-dG-dC-dA-dT. 1978

J Reuben, and B M Baker, and N R Kallenbach

The influence of self-complementary oligodeoxynucleotides on the chemical shifts of protons of the mutagenic acridine dye 9-aminoacridine has been measured. Upfield shifts indicative of intercalative binding are found in the cases of dG-dC, dC-dG, and dA-dT-dG-dC-dA-dT but not in dA-dT. Geometries for the complexes that are compatibile with the chemical-shift data and the X-ray structure of the complex between ri5C-rG and 9-aminoacridine determined by Sakore et al. [Sakore, T.D., Jain, S.C., Tsai, C., and Sobell, H.M. (1977), Proc. Natl. Acad. Sci. U.S.A. 74, 188--192] can be identified using recent theoretical estimates of shifts induced by nucleotide bases.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D000166 Acridines Compounds that include the structure of acridine. Acridine
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

J Reuben, and B M Baker, and N R Kallenbach
May 1979, European journal of biochemistry,
J Reuben, and B M Baker, and N R Kallenbach
January 1983, Biochimica et biophysica acta,
J Reuben, and B M Baker, and N R Kallenbach
October 1989, Journal of biomolecular structure & dynamics,
J Reuben, and B M Baker, and N R Kallenbach
February 1982, Nucleic acids research,
J Reuben, and B M Baker, and N R Kallenbach
October 2013, Journal of photochemistry and photobiology. B, Biology,
J Reuben, and B M Baker, and N R Kallenbach
December 1984, Molecular and cellular biology,
Copied contents to your clipboard!