Towards an estimate of chloride permeability in the smooth muscle of guinea-pig vas deferens. 1983

C C Aickin, and A F Brading

Cl movements across the cell membranes of smooth muscle from the guinea-pig vas deferens were measured using Cl-sensitive micro-electrodes and 36Cl fluxes. The rate constants for the loss of Cl ions measured by both methods under a variety of conditions were used to calculate the apparent Cl permeability (PCl). If it is assumed that the initial rate of decline of the intracellular Cl activity (aiCl) on removal of extracellular Cl (Clo) represents net transmembrane Cl movement, the apparent PCl was 3-6 X 10(-8) cm s-1. This value is in good agreement with those calculated from the rate constant of 36Cl efflux into both normal Krebs solution (steady-state) and Cl-free solution. Such a value for PCl predicts a large depolarization on removal of Clo, but only a minimal change was recorded. It also predicts that changes in membrane potential (Em) would affect aiCl; furthermore that removal of Clo would increase membrane resistance and thus the hyperpolarization observed on reactivation of the electrogenic Na pump. Neither of these was observed. The PCl/PK ratio obtained from changes in Em on rapid changes in Clo and Ko gives a value for PCl which is an order of magnitude lower: 4 X 10(-9) cm s-1, using Casteels' (1969 b) value for PK. These observations can be reconciled by a substantial proportion of the measured Cl movements being carrier-mediated. The presence of the stilbene derivative DIDS greatly slowed both the steady-state efflux and uptake of 36Cl, as has previously been shown for the loss and reaccumulation of Cl ions on removal and replacement of Clo. PCl calculated in the presence of DIDS was about 5 X 10(-9) cm s-1. The nominal absence of CO2 and HCO3, which slows the reaccumulation and loss of Cl, had no effect on the steady-state fluxes. This indicates that the carrier operates in the self-exchange mode in the steady state.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

C C Aickin, and A F Brading
January 1973, Acta biochimica et biophysica; Academiae Scientiarum Hungaricae,
C C Aickin, and A F Brading
March 1967, The Journal of physiology,
C C Aickin, and A F Brading
September 1966, The Journal of physiology,
C C Aickin, and A F Brading
July 1978, Cell and tissue research,
C C Aickin, and A F Brading
April 1985, Nihon Heikatsukin Gakkai zasshi,
C C Aickin, and A F Brading
June 1968, The Journal of cell biology,
C C Aickin, and A F Brading
October 1987, Japanese journal of pharmacology,
C C Aickin, and A F Brading
February 1964, The Australian journal of experimental biology and medical science,
C C Aickin, and A F Brading
December 1968, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
Copied contents to your clipboard!